# First Quarter 2005 Groundwater Monitoring Report

Pierson Building Center Eureka, California Case No. 12105 RWQCB Order R1-2004-0058

Prepared for:

**Pierson Investment Company** 

Reference: 091148.100

March 9, 2005

Mr. Robert Stone Humboldt County Division of Environmental Health 100 H St., Suite 100 Eureka, CA 95501

Subject: First Quarter 2005 Groundwater Monitoring Report, Pierson Building

Center, Eureka, California; Case No. 12105; RWQCB Order R1-2004-0058

Dear Mr. Stone:

Presented herein are the results of the first quarter 2005 groundwater monitoring event conducted for the Pierson Building Center, 4100 Broadway, Eureka, California. Groundwater was monitored on January 14, 2005. Groundwater monitoring was performed by SHN Consulting Engineers & Geologists, Inc. at the request of the Humboldt County Division of Environmental Health.

If you have any questions, please call Roland Rueber or me at 707/441-8855.

Sincerely,

SHN Consulting Engineers & Geologists, Inc.

Trick Basanti

Patrick Barsanti Project Manager

PNB/ADM/RMR:lms Enclosure: Report

copy w/encl: Morgan Randall, Pierson Building Center

Bonnie Rollandelli, RWQCB

Andrew Locicero, Blue Rock Environmental

UST Cleanup Fund

Reference: 091148.100

# First Quarter 2005 Groundwater Monitoring Report

Pierson Building Center
Eureka, California
Case No. 12105
RWQCB Order R1-2004-0058

Prepared for:

Pierson Investment Company

Consulting Engineers & Geologists, Inc. 812 W. Wabash Eureka, CA 95501-2138 707/441-8855

March 2004



### **Table of Contents**

|      |            |                                                                           | Page  |
|------|------------|---------------------------------------------------------------------------|-------|
| 1.0  | Intro      | oduction                                                                  | 1     |
|      | 1.1        | Site Location                                                             | 1     |
|      | 1.2        | Background                                                                | 1     |
|      | 1.3        | Objective                                                                 |       |
| 2.0  | Field      | d Activities                                                              | 2     |
| 2.0  | 2.1        | Monitoring Well Sampling                                                  |       |
|      | 2.2        | Laboratory Analysis                                                       |       |
|      | 2.3        | Equipment Decontamination Procedures                                      |       |
|      | 2.4        | Investigation-Derived Waste Management                                    |       |
| 3.0  |            | undwater Monitoring Results                                               |       |
| 3.0  |            |                                                                           |       |
|      | 3.1        | Hydrogeology                                                              |       |
|      | 3.2        | Groundwater Analytical Results  Natural Attenuation Parameters            |       |
|      | 3.3        | Natural Attenuation Parameters                                            | o     |
| 4.0  | Con        | clusions                                                                  | 6     |
| 5.0  | Resp       | oonse to Blue Rock's Fourth Quarter 2004 Groundwater Monitoring- Remedial |       |
|      |            | ems Operations Report and Additional Commingled Plume Evaluation          | 6     |
| 6.0  | Reco       | ommendations                                                              | 11    |
| 7.0  | Dofo       | erences Cited                                                             | 19    |
| 7.0  | Refe       | rences cheu                                                               | 12    |
| App  | endices    | S                                                                         |       |
| FF   | Α.         | Field Notes                                                               |       |
|      | В.         | Historic Monitoring Data                                                  |       |
|      | C.         | Laboratory Analytical Reports                                             |       |
|      |            | <b>J J I</b>                                                              |       |
| List | of Il      | lustrations                                                               |       |
|      |            |                                                                           |       |
| Figu | res        | Follows                                                                   | Page  |
|      | 1.         | Site Location Map                                                         | 1     |
|      | 2.         | Site Plan                                                                 | 1     |
|      | 3.         | Groundwater Contours, January 14, 2005                                    | 3     |
|      | 4.         | Groundwater Analytical Results, January 14, 2004                          |       |
|      | <b>5</b> . | Selective Microbial Degraderson p                                         |       |
|      | 6.         | TPHPT Concentrations Through Time, MW-102on p                             | age 8 |
|      | 7.         | TPHPT Concentrations Through Time, MW-103 on p                            | age 9 |
| Tabl | Δς         |                                                                           | Page  |
| ıavı | es<br>1.   | Groundwater Elevations, January 14, 2005                                  |       |
|      | 2.         | Groundwater Analytical Results, January 14, 2005                          |       |
|      | 2.<br>3.   | Microbiological Plate Counts, January 14, 2005                            |       |
|      | 3.<br>4.   | DO, DCO <sub>2</sub> , and ORP Measurement Results, January 14, 2005      |       |
|      | 4.<br>5.   | MNA Indicator Comparison, August 2004                                     |       |
|      | J.         | 1911 173 maicator Comparison, raugust 2004                                | ປ     |

#### **Abbreviations and Acronyms**

< denotes a value that is "less than" the method detection limit

ft/ft feet per foot

mg/L milligrams per Liter

mV millivolts

ppm parts per million ug/L micrograms per Liter

AP Assessor's Parcel BTS Bishop's Truck Stop

DCO<sub>2</sub> Dissolved Carbon Dioxide

DO Dissolved Oxygen EB\_# soil sample-#

EC Electrical Conductivity

EPA Environmental Protection Agency HB&M Humboldt Base and Meridian

**HCDEH** Humboldt County Division of Environmental Health

MNA Monitored Natural Attenuation
DOT Department of Transportation

MSL Mean Sea Level

MTBE Methyl Tertiary-Butyl Ether

MW-# Monitoring Well-#
NA Not Analyzed
NR No Reference

**ORP** Oxidation-Reduction Potential

PBC Pierson Building Center

RWQCB California Regional Water Quality Control Board, North Coast Region

SHN SHN Consulting Engineers & Geologists, Inc.
TPHD Total Petroleum Hydrocarbons as Diesel
TPHG Total Petroleum Hydrocarbons as Gasoline
TPHPT Total Petroleum Hydrocarbons as Paint Thinner

**UST** Underground Storage Tank

#### 1.0 Introduction

SHN Consulting Engineers & Geologists, Inc. (SHN) is submitting this quarterly groundwater monitoring report on behalf of Pierson Building Center (PBC) for the first quarter of 2005. This work was performed as requested by the Humboldt County Division of Environmental Health (HCDEH) and the California Regional Water Quality Control Board, North Coast Region (RWQCB).

This report describes the post injection groundwater monitoring. This section serves as an introduction and discusses the background of the site, provides the site description, and presents the objective of the work conducted. Section 2.0 describes the field program for the work conducted and Section 3.0 provides the results of the investigation. Section 4.0 summarizes the conclusions. Section 5.0 discusses our response to comments received from Blue Rock Environmental. Section 6.0 presents our recommendations, and Section 7.0 presents cited references.

#### 1.1 Site Location

The PBC site is located at 4100 South Broadway, Eureka, Humboldt County (Assessor's Parcel [AP] #019-251-04), California. The site is located within the southwest 1/4 of Section 33, Range 1 West, Township 5 North, Humboldt Base and Meridian (HB&M) (Figure 1). One former Underground Storage Tank (UST) was located at the northern boundary of the property (Figure 2).

The Bishop's Truck Stop (BTS) site is located at 4050 Broadway (AP #019-251-06), just north of the Pierson property. The BTS site is a full service fueling station, and USTs exist on site. Formerly there were 4 USTs located along their southern property line, immediately adjacent to and northeast of PBC's former UST location (Figure 2). Currently, the BTS site is under investigation and several borings and monitoring wells have been installed, monitored, and sampled. Blue Rock Environmental is the consultant for Tamo and Renner who are the Responsible Parties for the BTS site. Big Oil and Tire is the current property owner, and is currently investigating the area adjacent to the existing USTs for hydrocarbon releases. Other businesses that operate on this adjacent site include: Gosselin Trucking, Masterson Communications, Pocket of Posies flower shop, and a freight storage and transfer business. Additionally, there was a former petroleum bulk tank farm located at the western portion of the BTS site.

#### 1.2 Background

PBC is a retail hardware and lumber supply store that has operated at this location since 1946. PBC installed a 550-gallon UST in 1975, to store bulk paint thinner for retail sale. The paint thinner, product name "Mineral Spirits 75," was supplied by the Unocal Corporation. The permitted UST was used exclusively for paint thinner storage until 1987.

An application for a permit to close the UST was submitted to the HCDEH on April 29, 1987. During November 1987, the UST was closed in-place by Beacom Construction Company, and filled with concrete. The tank was subsequently removed in April of 1990.

Several investigations have been performed at the PBC site and the BTS site. Based on the results of the previous investigations, there appears to be a commingled plume of paint thinner from the PBC





site and diesel and gasoline from the BTS site. A detailed description of previous site activities is presented in the 2001 *Subsurface Investigation, Monitoring Well Installation, and Groundwater Monitoring Report* (SHN, 2001).

On February 3 through 6, 2003, SHN supervised the injection of approximately 6,580 gallons of BioJet's® proprietary biosolution into the subsurface as part of the remedial action for the site (SHN, 2003).

On June 22, 2004, SHN supervised the injection of approximately 1,580 gallons of BioJet's® proprietary biosolution into the subsurface (SHN, August 2004).

On December 1, 2004, the RWQCB rescinded Waste Discharge Requirements Order No. R1-2002-0110 and monitoring and reporting program Order No. R1-2004-0058.

#### 1.3 Objective

The objective of this investigation was to monitor groundwater to determine the effectiveness of the remedial action performed at the site.

The approved scope of work consisted of these tasks:

- Perform groundwater monitoring
- Submit data electronically to the Geotracker Database

#### 2.0 Field Activities

On January 14, 2005, groundwater was monitored and sampled from 7 wells at the site. Groundwater samples were submitted to North Coast Laboratories in Arcata, California for laboratory analysis. SHN set up and coordinated all activities related to the project.

#### 2.1 Monitoring Well Sampling

On January 14, 2005, SHN conducted quarterly groundwater monitoring of monitoring wells MW-101 through MW-107. As part of the groundwater-monitoring program, each well was measured for depth to groundwater, purged, and sampled. Prior to purging activities, Dissolved Oxygen (DO), Oxidation-Reduction Potential (ORP), and Dissolved Carbon Dioxide (DCO<sub>2</sub>) were measured in each monitoring well. DO and ORP monitoring was conducted using portable instrumentation, and DCO<sub>2</sub> was measured using a field test kit. During purging, each well was monitored for Electrical Conductivity (EC), temperature, and pH using portable instrumentation. Upon completion of well purging activities, groundwater-monitoring wells were sampled. Each groundwater sample was collected using a disposable polyethylene bailer and transferred into laboratory-supplied bottles. Water samples were labeled, stored in an iced cooler, and transported to the laboratory under proper chain-of-custody documentation. Groundwater samples were analyzed using the methods discussed in the Laboratory Analysis section. Field notes and groundwater sampling data sheets are included in Appendix A.

#### 2.2 Laboratory Analysis

Each groundwater sample was analyzed for:

- Total Petroleum Hydrocarbons as Diesel (TPHD) (C<sub>12</sub> to C<sub>22</sub>) and Total Petroleum
   Hydrocarbons as Gasoline (TPHG) (C<sub>6</sub> to C<sub>12</sub>) in general accordance with U.S. Environmental
   Protection Agency (EPA) Method No. 3510
  - Total Petroleum Hydrocarbons as Paint Thinner (TPHPT) (C<sub>8</sub> to C<sub>12</sub>) in general accordance with EPA Method No. 5030
  - Microbial enumeration using standard microbial plate count techniques on MW-102 and MW-103

Groundwater samples were transported to North Coast Laboratories, of Arcata, California (NCL) for analysis. Microbial enumeration was performed by BioJet<sup>®</sup> of Ione, California.

#### 2.3 Equipment Decontamination Procedures

All equipment was cleaned prior to bringing it on site. All small equipment that required on-site cleaning was cleaned using the triple wash system. The equipment was first washed in a water solution containing Liquinox® cleaner, followed by a distilled water rinse, then by a second distilled water rinse.

#### 2.4 Investigation-Derived Waste Management

Water used in the decontamination of equipment, tools, and all purge water was contained in approved Department of Transportation (DOT) 17 E/H, 55-gallon drums. The water was transported to SHN's purge water storage facility and will be discharged, under permit, to the City of Eureka Wastewater collection system. Approximately 40 gallons of water was generated during the first quarter 2005 monitoring event. A discharge receipt from the first quarter 2005 groundwater-monitoring event will be included in a future report. A discharge receipt from the fourth quarter, 2004 groundwater monitoring event is included in Appendix A.

#### 3.0 Groundwater Monitoring Results

#### 3.1 Hydrogeology

On January 14, 2005, the direction of groundwater flow was to the northwest, with an approximate gradient of 0.001 feet per foot (ft/ft). Figure 3 presents a map showing the groundwater configuration on January 14, 2005.

Table 1 summarizes groundwater elevation data. Historic data are included in Appendix B.





| Table 1                                                                                         |                                          |                    |       |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|-------|--|--|--|--|--|--|
| Gro                                                                                             | Groundwater Elevations, January 14, 2005 |                    |       |  |  |  |  |  |  |
| Piers                                                                                           | son Building Cen                         | ter, Eureka, Calif | ornia |  |  |  |  |  |  |
| Sample Location Top of Casing Depth to Groundwater Elevation Groundwater (feet MSL1) (feet MSL) |                                          |                    |       |  |  |  |  |  |  |
| MW-101                                                                                          | 15.69                                    | 6.21               | 9.48  |  |  |  |  |  |  |
| MW-102                                                                                          | 14.81                                    | 5.38               | 9.43  |  |  |  |  |  |  |
| MW-103                                                                                          | 14.83                                    | 5.44               | 9.39  |  |  |  |  |  |  |
| MW-104                                                                                          | 14.09                                    | 4.76               | 9.33  |  |  |  |  |  |  |
| MW-105                                                                                          | 13.78                                    | 4.40               | 9.38  |  |  |  |  |  |  |
| MW-106                                                                                          | 15.59                                    | 6.29               | 9.30  |  |  |  |  |  |  |
| MW-107                                                                                          | 14.28                                    | 5.00               | 9.28  |  |  |  |  |  |  |
| 1. MSL: Mean Se                                                                                 | a Level                                  | 2. Below top of ca | sing  |  |  |  |  |  |  |

#### 3.2 Groundwater Analytical Results

Groundwater analytical data for the January 14, 2005, monitoring event are summarized in Table 2 and Figure 4.

Tabla 9

| Table 2                                                                |                           |                           |        |  |  |  |  |  |  |
|------------------------------------------------------------------------|---------------------------|---------------------------|--------|--|--|--|--|--|--|
| Groundwater Analytical Results, January 14, 2005                       |                           |                           |        |  |  |  |  |  |  |
| Piers                                                                  | on Building Cent          | er, Eureka, Califo        | rnia   |  |  |  |  |  |  |
|                                                                        | (in u                     | g/L) <sup>1</sup>         |        |  |  |  |  |  |  |
| Sample Location TPHD <sup>2</sup> TPHPT <sup>3</sup> TPHG <sup>4</sup> |                           |                           |        |  |  |  |  |  |  |
| MW-101                                                                 | <b>260</b> <sup>5,6</sup> | <b>960</b> <sup>7</sup>   | 1,3008 |  |  |  |  |  |  |
| MW-102                                                                 | 1405,6                    | <b>330</b> <sup>7</sup>   | 3808   |  |  |  |  |  |  |
| MW-103                                                                 | 410 <sup>5,6</sup>        | <b>1,200</b> <sup>7</sup> | 1,2008 |  |  |  |  |  |  |
| MW-104                                                                 | < 509                     | < 50                      | < 50   |  |  |  |  |  |  |
| MW-105                                                                 | < 50                      | < 50                      | < 50   |  |  |  |  |  |  |
| MW-106                                                                 | MW-106 <50 <50 <50        |                           |        |  |  |  |  |  |  |
| MW-107                                                                 |                           |                           |        |  |  |  |  |  |  |

- 1. ug/L: micrograms per Liter
- 2. TPHD: Total Petroleum Hydrocarbons as Diesel analyzed in general accordance with EPA Method No. 3510.
- 3. TPHPT: Total Petroleum Hydrocarbons as Paint Thinner analyzed in general accordance with EPA Method No. 5030.
- 4. TPHG: Total Petroleum Hydrocarbons as Gasoline analyzed in general accordance with EPA Method No. 5030.
- 5. Samples contain some material lighter than diesel. However, some of this material extends into the diesel range of molecular weights.
- 6. Samples contain material in the diesel range of molecular weights, but the material does not exhibit the peak pattern typical of diesel oil.
- 7. Samples do not present a peak pattern consistent with that of paint thinner. The reported results represent the amount of material in the paint thinner range.
- 8. Samples do not present a peak pattern consistent with that of gasoline. The reported results represent the amount of material in the gasoline range.
- c: denotes a value that is "less than" the method detection limit.



Low to moderate concentrations of petroleum hydrocarbons were detected in groundwater from monitoring wells MW-101, 102, and 103.

Microbial plate counts for heterotrophic and selective degraders were performed on groundwater samples from MW-102 and MW-103. Selective degraders were determined by adding a mixture of gasoline, paint thinner, and diesel to the plate. Results are presented in Table 3. Historic data are included in Appendix B. Laboratory analytical reports are included in Appendix C.

| Table 3<br>Microbiological Plate Counts, January 14, 2005<br>Pierson Building Center, Eureka, California |                                       |                                      |             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|-------------|--|--|--|--|
| Sample<br>Location                                                                                       | Heterotrophic (1.00x10 <sup>5</sup> ) | Selective<br>(1.00x10 <sup>5</sup> ) | % Degraders |  |  |  |  |
| MW-102                                                                                                   | 9.1                                   | 2.1                                  | 23.08       |  |  |  |  |
| MW-103                                                                                                   | 7.2                                   | 3.5                                  | 48.61       |  |  |  |  |

#### 3.3 Natural Attenuation Parameters

Monitoring for indicators of biodegradation was performed on groundwater from site wells during the January 14, 2005, monitoring event. During the January 2005 monitoring event, DO concentrations ranged from 0.91 parts per million (ppm) in monitoring well MW-101, to 5.02 ppm in monitoring well MW-105, indicating that aerobic biodegradation may be occurring on site. DCO<sub>2</sub> concentrations ranged from 15 ppm in monitoring well MW-105, to 50 ppm in monitoring well MW-103. ORP measurements ranged from 65 millivolts (mV) in monitoring well MW-105, to 114 mV in monitoring well MW-106, indicating that mildly oxidizing conditions are present.

Results are presented in Table 4. Historic DO, DCO<sub>2</sub>, and ORP measurement results are included in Appendix B.

| Table 4 DO, DCO <sub>2</sub> , and ORP Measurement Results, January 14, 2005 |       |                    |                   |  |  |  |  |  |
|------------------------------------------------------------------------------|-------|--------------------|-------------------|--|--|--|--|--|
| Pierson Building Center, Eureka, California  Sample DO¹ DCO₂¹ ORP¹           |       |                    |                   |  |  |  |  |  |
| Location                                                                     | (ppm) | (ppm) <sup>2</sup> | (mV) <sup>3</sup> |  |  |  |  |  |
| MW-101                                                                       | 0.91  | 25                 | 72                |  |  |  |  |  |
| MW-102                                                                       | 1.08  | 40                 | 91                |  |  |  |  |  |
| MW-103                                                                       | 0.98  | 50                 | 103               |  |  |  |  |  |
| MW-104                                                                       | 1.73  | 45                 | 74                |  |  |  |  |  |
| MW-105                                                                       | 5.02  | 15                 | 65                |  |  |  |  |  |
| MW-106                                                                       | 1.65  | 40                 | 114               |  |  |  |  |  |
| MW-107                                                                       | 0.99  | 40                 | 111               |  |  |  |  |  |

<sup>1.</sup> Dissolved Carbon Dioxide (DCO<sub>2</sub>), Dissolved Oxygen (DO), and Oxidation-Reduction Potential (ORP) measured with portable equipment.

<sup>2.</sup> ppm: parts per million

<sup>3.</sup> mV: millivolts

#### 4.0 Conclusions

These conclusions are based upon the information presented.

- When compared to results from the last sampling event, petroleum hydrocarbon concentrations have decreased slightly in groundwater samples collected from monitoring wells MW-101 and MW-102, and MW-103.
- The population of selective microbial degraders has increased in MW-102 and MW-103 when compared to results from the fourth quarter 2004 populations (Figure 5).



# 5.0 Response to Blue Rock's Fourth Quarter 2004 Groundwater Monitoring- Remedial Systems Operations Report and Additional Commingled Plume Evaluation

The following are SHN's response to the Blue Rock Report. Statements from Blue Rock are in italics followed by our response:

• Soil analytical data collected by SHN from soil boring EB-113 located downgradient (west) of the former paint thinner UST indicated the highest concentration of sorbed-phase TPHg...

The soil sample from EB-113 was collected in January 1992 from a depth of 6.9 feet below grade. Based on the water levels in MW-102 and MW-105, this sample was collected from within the saturated zone, therefore contamination detected was from both sorbed and

dissolved phase contamination. The former UST at Piersons was used exclusively for paint thinner storage, not gasoline, and the high TPHG detected in this sample was likely an overlap from TPHPT into the quantified gasoline range.

• Table 1 of the fingerprinting analysis performed by Friedman & Bruya did not include naphthalene and trimethylbenzene and other compounds of interest...

A complete list of analytes was included in the January 27, 2004 report from Freidman & Bruya. Naphthalene and trimethylbenzenes were detected in the samples from MW-2A-Post and MW-101-Post. Naphthalene was detected in the sample from MW-103-Post. Naphthalene and trimethylbenzenes were not detected in the groundwater sample from MW-102-Post. With the exception of chloroform, all compounds detected by EPA Method 8260B in the sample from MW-102-Post were present in the samples from MW-101-Post, MW-103-Post, and MW-2A-Post.

• The compounds discussed in the lab text are also in paint thinner.

As paint thinner and gasoline are comprised of similar individual constituents, it is difficult to determine the amount of paint thinner present at the site. However, isooctane was detected in the groundwater samples from MW-101-Post, MW-103-Post, and MW-2A-Post. Isooctane is an important compound that differentiates gasoline from other light petroleum products (Zymax, 2000).

• The natural attenuation monitoring data show that dissolved oxygen (DO) is low within the PBC TPHpt plume. DO in the TPHpt plume wells does not exceed 1 ppm, and the maximum DO recorded in their well network was 1.56 ppm. It is generally accepted that DO levels need to be sustained above 1 ppm at the minimum to support ongoing aerobic biodegradation of petroleum hydrocarbons...

Monitored Natural Attenuation (MNA) is the reduction in mass or concentration of a chemical in groundwater over time or distance from the source of contamination due to naturally occurring physical, chemical, and biological processes (Barden, 2002). These processes include dispersion (dilution), sorption of contaminants to soil particles, volatilization, biodegradation of contaminants by naturally occurring or introduced organisms under aerobic or anaerobic conditions, or abiotic degradation/transformation (Wiedemeier, 2002). Three lines of evidence (Wiedemeier et al., 1999) that can be used to support MNA are:

- 1) Documented loss of contaminants in monitoring wells over time
- 2) Contaminant and geochemical analytical data
- 3) Direct microbiological evidence

Concentrations of TPHPT have been declining in groundwater samples from MW-102. A graph showing the TPHPT concentrations through time is shown on Figure 6. Concentrations versus time rate constants are used for estimating how quickly remediation goals will be met at a site (Newell et al., 2002). The rate constants are derived from plotting the concentration of the contaminant versus time, fitting a best-fit line to the data, and

calculating the slope of the line. The rate constant is then used to estimate when a particular water quality goal will be achieved. These procedures are detailed in *Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies* (Newell et al., 2002).



TPHPT concentration data versus time was plotted from MW-102 and a trend line was calculated using an excel spreadsheet. Trend lines were calculated using all the available groundwater analytical data. Using the derived rate constants and a water quality goal of 50 ug/L, the estimated time to achieve the goal was calculated. The estimated time to achieve water quality goals is approximately eight years. Based on these calculations, it is conservatively estimated that TPHPT concentrations in MW-102 will reach water quality goals within ten years.

Table 5 shows trends expected in geochemical data from groundwater when MNA is occurring, and compares data from MW-102 and MW-103 to background conditions at MW-105 collected in July 2004. Dissolved oxygen is the favored electron receptor used in the biodegradation of petroleum hydrocarbons. As dissolved oxygen is depleted within the contaminant plume, nitrate, iron (III), and sulfate are used for electron acceptors for anaerobic degradation (Wiedemeier et al., 1999). The average DO concentration for MW-102 is 0.93 ppm, and for MW-103 is 1.3 ppm. The data indicate that MNA is occurring at the PBC site.

# Table 5 Monitored Natural Attenuation Indicator Comparison, August 2004 Pierson Building Center Eureka, California

| Groundwater<br>Bioremediation<br>Parameter | Units             | Expected Trend for<br>Source Well Related<br>to Background | Source<br>Well<br>MW-102 | Down-<br>gradient<br>Well<br>MW-103 | Background<br>Well MW-5 | Consistent<br>with Trend |
|--------------------------------------------|-------------------|------------------------------------------------------------|--------------------------|-------------------------------------|-------------------------|--------------------------|
| Dissolved Oxygen                           | ppm <sup>1</sup>  | Decreases                                                  | 0.52                     | 0.85                                | 1.43                    | Yes                      |
| Dissolved Carbon Dioxide                   | ppm               | Increases                                                  | 50                       | NM <sup>2</sup>                     | 45                      | Yes                      |
| Oxidation-Reduction Potential              | mV <sup>3</sup>   | Decreases                                                  | 0                        | 9                                   | 100                     | Yes                      |
| Dissolved Iron                             | ug/L4             | Increases                                                  | 4,600                    | 13,000                              | <100                    | Yes                      |
| Nitrate                                    | mg/L <sup>5</sup> | Decreases                                                  | <0.10                    | < 0.10                              | 0.81                    | Yes                      |

<sup>1.</sup> ppm: parts per million

4. μg /L: micrograms per Liter

5. mg/L: milligrams per Liter

Microbial plate counts for heterotrophic and selective degraders indicate that populations of hydrocarbon degrading organisms are present within the TPHPT plume.

A TPHpt concentration of 4,300 ug/L was detected in MW-103, which has been depicted as
downgradient from the PBC paint thinner UST. This is concerning because these levels are relatively
high and are impacting the BTS site.

Data from the January 2005 groundwater-monitoring event show concentrations of TPHD, TPHPT, and TPHG in the groundwater samples from monitoring well MW-103 at concentrations of 410, 1,200 and 1,200 ug/L, respectively. MW-103 is also downgradient of the former UST's at the BTS site, and the highest concentrations of petroleum hydrocarbons are present in monitoring well MW-2A. The TPHPT present in MW-103 may be related to TPHG from the former UST's at the BTS site, due to the overlap of hydrocarbon ranges in the analysis for TPHG and TPHPT. TPHD, TPHPT, and TPHG were detected in groundwater samples from MW-101 at concentrations of 260, 960, and 1,300 ug/L, respectively. Isooctane was detected in groundwater samples from MW-101 and MW-103 and indicates the presence of gasoline in these wells (SHN, March 2004). It is unlikely that the former paint thinner UST has impacted the upgradient well MW-101, as no TPHPT was detected in the groundwater sample from B-110, which is located between MW-102 and MW-101. Petroleum hydrocarbons detected in MW-101 are more likely to have originated from the former UST's at the BTS site.

There is no summary of theoretical (i.e. stoichiometric) paint thinner degradation using BioJet.

As with gasoline and diesel, paint thinner is a complex mixture of numerous individual compounds. Stoichiometric degradation calculations can be made for individual compounds such as benzene or toluene, but due to the number of individual compounds that comprise paint thinner calculations are not possible. Bench scale tests were performed

<sup>2.</sup> NM: Not Measured

<sup>3.</sup> mV: millivolts

on soil samples from the PBC site, and showed that the Biojet solution was capable of degrading the TPHD, TPHPT and TPHG present within the commingled plume (SHN, 2002).

#### Wells MW-101, MW-102, and MW-103 do not show any decrease of TPHpt over time.

Well MW-101 is upgradient of the TPHPT source area, and petroleum hydrocarbons present in this well are more likely from the former UST's at the BTS site. As shown in Figure 6, TPHPT concentrations in MW-102 have decreased through time. A shown in Figure 7, TPHPT concentrations in MW-103 have a slightly decreasing trend line. The amount of paint thinner (if any) in MW-103 could not be determined from the hydrocarbon fingerprinting, and the presence of isooctane in the groundwater sample from MW-103 indicates that gasoline from the former UST's at the BTS site have impacted this well (SHN, March 2004).



• Using SHN's own equations for calculation of pre- and post-remedial TPHpt masses, no reduction in TPHpt mass is observed....

Blue Rock performed revised mass calculations using data from the October 2004 groundwater monitoring event at the PBC, compared the results to the pre-injection mass calculations performed by SHN, and concluded that there was no reduction in TPHPT mass at the PBC site. The TPHPT results from MW-102 in October 2004, which were used for the calculations, were slightly higher (490 ug/L) than the pre-injection concentration from

January 20, 2003 (480 ug/L), therefore the total mass of TPHPT was slightly higher. Using the most recent TPHPT result from MW-102 in the calculations (330 ug/L), the overall mass will be less than the pre-injection mass.

 Further, SHN indicates that natural attenuation of the residual TPHpt plume will continue over time, yet their own data show an ongoing decline in the population of selected hydrocarbon degraders used to support concept of ongoing natural attenuation.

In the fourth quarter 2004 groundwater monitoring report (SHN, November 2004), the populations of selective hydrocarbon degrading organisms were reported to be greater than the previous sampling event (July 2004), and have increased since (Figure 5). While the populations peaked and declined after the first injection event, the populations have been increasing since the second injection event. As previously stated, natural attenuation processes consist of various mechanisms to reduce hydrocarbon mass, and MNA does not rely solely on microbes to degrade contaminants.

• Finally, Blue Rock in unaware of any confirmation soil sampling performed...

Our effort was to remediate groundwater and soil so that contamination is not a threat to groundwater, therefore remediation effectiveness can be observed through groundwater sampling results. Sorbtion of dissolved contamination onto the aquifer matrix results in a reduction of dissolved contaminant concentrations in groundwater (Wiedemeier et at., 1999). Any residual sorbed phase mass that is present at the site will slowly degrade through time. Groundwater at MW-102 is estimated to achieve a water quality goal of 50 ug/L (which is the listed water quality goal for gasoline (Marshack, 2003)) in approximately ten years. As long as any sorbed phase contamination remains sorbed to soil, the contamination is not a threat to impact water quality. If the contamination desorbs, it will be remediated through natural attenuation mechanisms, which we have demonstrated are occurring at the Pierson site.

#### 6.0 Recommendations

SHN is recommending the site for closure. The rational for closure is as follows:

- The source of contamination (paint thinner UST) was removed. The UST was used exclusively for paint thinner storage.
- The site has been adequately characterized. The extent of soil and groundwater contamination related to the former paint thinner UST has been defined.
- The groundwater gradient at the site is relatively flat and groundwater flow direction has been consistently to the west or northwest.
- Petroleum hydrocarbons have not been detected in monitoring wells MW-104 and MW-105, which are downgradient of the former paint thinner UST.
- Based on the results of the hydrocarbon fingerprinting, groundwater flow directions, and
  contaminant concentrations, it appears that the magnitude of the release from the former Bishop
  UST complex was much greater than that from the Pierson UST. The release from the former
  Bishop UST complex has impacted groundwater in the vicinity of monitoring wells MW-2A,
  MW-101 (upgradient of the paint thinner release), and MW-103 (downgradient of the paint

thinner release). The presence of MTBE in MW-106 and MW-107 indicate hydrocarbon contamination in groundwater samples from these wells may be from the Bishop site (SHN, March 2004).

- The injection of BioJet's® proprietary biosolution was effective in enhancing the degradation of petroleum hydrocarbons at the site. However, due to the impact from the former Bishop UST complex, petroleum hydrocarbons continue to be detected in groundwater at the site.
- The active remediation occurring at the BTS site will continue to remove petroleum hydrocarbons that have migrated onto the Pierson site and will remove the source contributing to contamination in MW-103.
- Natural attenuation mechanisms are active at the site, and will continue to degrade residual groundwater contamination. Groundwater quality goals will be achieved in MW-102 within ten years.
- No sensitive receptors have been, or are likely to be, impacted from the former paint thinner UST.
- The majority of the site is capped and, therefore, any potential exposure to residual soil contamination related to the former paint thinner UST has been mitigated. If any subsurface construction occurs in this area, any petroleum hydrocarbon impacted soil will be disposed of appropriately.

In summary, the site has been adequately characterized, remediated, and has successfully demonstrated, through verification monitoring, that no threat to sensitive receptors is present. No further groundwater monitoring events are planned for the site.

Therefore, SHN recommends that the HCDEH and the RWQCB issue a "no further action" letter for the Pierson site. Upon approval of the "no further action" letter, SHN will coordinate the destruction of the monitoring wells at the site.

#### 7.0 References Cited

- Barden, M.J. (2002). "Natural Attenuation for Remediation of Contaminated Sites #571. National Groundwater Association Short Course." Westerville: NGA.
- Marshack, J.B. (2003). Beneficial Use-Protective Water Quality Limits for Components of Petroleum based Fuels. Sacramento: Cal-EPA, RWQCB-Central Valley Region.
- Newell, C.J., H.S. Rifai, J.T. Wilson, J.A Conner, J. A. Aziz, and M.P. Suarez. (November 2002). "Ground Water Issue, Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies." EPA/540/S-02/500. NR:EPA.
- SHN Consulting Engineers & Geologists, Inc. (June 2001). Subsurface Investigation, Monitoring Well Installation, and Groundwater Monitoring Report, Pierson Building Center, 4100 Broadway, Eureka, California. Eureka: SHN.
- --- (June 2002). Additional Subsurface Investigation and BioJet Bench Scale Test Results, Pierson Building Center, 4100 Broadway, Eureka, California. Eureka: SHN.
- --- (February 2003). Remedial Action Implementation Report, Pierson Building Center, 4100 Broadway, Eureka, California. Eureka: SHN.



- --- (March 2004). First Quarter 2004 Groundwater Monitoring Report 4100 Broadway, Eureka, California. Eureka: SHN.
- --- (August 2004). Third Quarter 2004 Groundwater Monitoring and Additional Biojet<sup>a</sup> Injection Report 4100 Broadway, Eureka, California. Eureka: SHN.
- --- (November 2004). Fourth Quarter 2004 Groundwater Monitoring Report 4100 Broadway, Eureka, California. Eureka: SHN.
- Wiedemeier, T.H., J.T. Wilson, D.H Kampbell, R.N. Miller, J.E. Hansen. (1999). *Technical Protocol for Implementing Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater*. San Antonio:. Air Force Center for Environmental Excellence, Technology Transfer Division
- Wiedemeir, T.H. (2002). Natural Attenuation for Remediation of Contaminated Sites #571. National Groundwater Association Short Course. Westerville, Ohio.
- Zymax (2000). Forensics Primer, An Introduction to Environmental Forensic Geochemistry. http://www.zymaxforensics.com/forensicsprimer/index.htm







#### CONSULTING ENGINEERS & GEOLOGISTS, INC.

480 Hemsted Drive \* Redding, CA 96002\* Tel: 530.221.5424 \* FAX: 530.221.0135 \*E-mail: shrinfo@shn-redding.com 812 W. Wabash \* Eureka, CA 95501 \* Tel: 707.441.8855 \* FAX: 707.441.8877 \*E-mail: shrinfo@shn-engr.com

| DAILY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JOB NO 09 (148,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT NAME PIER SON'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pickson's Building Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAILY FIELD REPORT SEQUENCE NO                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GENERAL LOCATION OF WORK EUREKO, CH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OWNER/CLIENT REPRESENTATIVE MCLGAN Randall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DATE DAY OF WEEK                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Quantaly Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Overcast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROJECT ENGINEER/SUPERVISOR Rueber                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SOURCE & DESCRIPTION OF FILL MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KEY PERSONS CONTACTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | David R. Pains                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0743 GREIVED at site  Wills except Mai.  0836 started taking air  Scrubbing it with  0859 started taking air  C954 started taking air  C954 started purging it  Cought in a gradulity started purging it  Cought in a gradulity started purging in  Caught in a gradulity started purging mu  Caught in a gradulity started purging in  Caught in a gradulity started purging | mu-106 with a disposable duated 4 gal bucket.  securited well with cap a successful with a disposable bar securited well with cap and interest of a gal bucket.  securited well with cap and interest of a gal bucket.  securited well with cap and in mw. 102 with a disposable bar dualed 4 gal bucket.  Securited well with cap and in mw. 102 with a disposable bar dualed 4 gal bucket.  Securited well with cap a disposable bar dualed 4 gal bucket.  securited will with cap as mw. 101 with a disposable bar dualed 4 gal bucket.  securited well with cap as mw. 101 with a disposable bar disposable bar dualed 4 gal bucket. | s on 1 wells, All count, bailed out.  moder after each well by with DI water.  bailer, purge water was  aller, purge water was  bailer, purge water was  d.  ler, purge water was  d.  bailer, purge water was  d.  d.  d.  d.  d.  d.  d.  d.  d.  d |
| plastic dram that I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I purge water was caught brought in the track then to Wabash Aurone Euxeka,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | konsported to SHN's lungal                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| COPY CIVEN TO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DE Dan R. Paine                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



### CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

### **Groundwater Elevations**

| Job No.: 091148.10 | 00                  | Name:                                | David R. Fa              | ina                                  |
|--------------------|---------------------|--------------------------------------|--------------------------|--------------------------------------|
| Client: PIERSON    | n's BUILDING CENTEI | R Date:                              | 1-14-05                  |                                      |
| Location: 4100 BRC | DADWAY EUREKA, CA   | Weathe                               | er: Overcust             |                                      |
| Sample Location    | Time of Reading     | Top of Casing<br>Elevation<br>(feet) | Depth To Water<br>(feet) | Water Surface<br>Elevation<br>(feet) |
| MW-101             | 0854                | 15.69                                | 6.21                     | 9.48                                 |
| MW-102             | 0848                | 14.81                                | 5.38                     | 9.43                                 |
| MW-103             | 0851                | 14.83                                | 5,44                     | 9.39                                 |
| MW-104             | 0842                | 14.09                                | 4.76                     | 9.33                                 |
| MW-105             | 0845                | 13.78                                | 4.40                     | 9,38                                 |
| MW-106             | 0836                | 15.59                                | 6.29                     | 9.30                                 |
| MW-107             | 0839                | 14.28                                | 5,00                     | 9.28                                 |
|                    |                     |                                      |                          |                                      |
|                    |                     |                                      |                          |                                      |
|                    |                     |                                      |                          |                                      |
|                    |                     |                                      |                          |                                      |
|                    |                     |                                      |                          |                                      |
|                    |                     |                                      |                          |                                      |
|                    |                     |                                      |                          |                                      |
| estino.            |                     |                                      |                          |                                      |
|                    |                     |                                      |                          |                                      |
|                    | 1                   |                                      |                          |                                      |
|                    |                     |                                      |                          | 1                                    |
|                    |                     |                                      |                          |                                      |
|                    |                     |                                      |                          |                                      |
|                    | -                   |                                      |                          |                                      |

# **EQUIPMENT CALIBRATION SHEET**

| Name: David R. Paina                                                                           |
|------------------------------------------------------------------------------------------------|
| Project Name: Pierson's Building Center                                                        |
| Reference No.: 091148,100                                                                      |
| Date: 1-14-05                                                                                  |
| Equipment: PID GTCO2 GTLEL  Turbidity Nother Dissolved Daysen Maken 4519                       |
| Description of Calibration Procedure and Results:                                              |
| pH &Ec meter is colibrated using a 2 buffer method with 7:01 and 4:01, the Ec (conductrity) is |
| set at 1413 115.                                                                               |
| DD meter is self colibrating with the                                                          |
| Altimenta set at U.                                                                            |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |

# SIN

#### CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shninfo@shn-engr.com

| Project                                 | Name: P.                                       | ekson's B                               |             |                                 | Date/Ti      | Sheet                   | (37        | -14.05                    |                |
|-----------------------------------------|------------------------------------------------|-----------------------------------------|-------------|---------------------------------|--------------|-------------------------|------------|---------------------------|----------------|
|                                         |                                                |                                         | _           | CENTER                          |              |                         | ^          | 2                         |                |
| Project                                 | 10 2-1-10 2000 11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 | 91148.10                                |             |                                 |              |                         |            | aine                      |                |
| Locatio                                 | 8                                              | ureka, C                                | Ĥ           |                                 | Sample       | 68.00                   | GR         | aind wa                   | ten            |
| Well#                                   |                                                | W-101                                   | -           |                                 | Weather      |                         | Du         | ercast                    |                |
| Hydro                                   | carbon Thick                                   | mess/Depth                              | (feet):     | NA                              | Key Nee      | eded:                   | YE         | 5 Dol                     | lphin          |
| Total We                                | et)                                            | Initial Depth<br>Water (feet            |             | Height of Wate<br>Column (feet) |              | 0.163 gal/<br>0.653 gal | /ft (4-in  | h well) /<br>ch well) =   | 1 Casing Volum |
| 14.                                     | 10 -                                           | 6.21                                    | = [         | 7.89                            | х            | 0,16                    | 3          |                           | 1.29           |
| Time                                    | DO<br>(ppm)                                    | CO <sub>2</sub><br>(ppm)                | ORP<br>(mV) | EC<br>(uS/cm)                   | Temp<br>(°F) |                         | рΗ         | Water<br>Removed<br>(gal) | Comments       |
| 0945                                    | 0.91                                           |                                         |             |                                 |              |                         |            | 0 gal.                    |                |
| 1355                                    |                                                | 25                                      | 22          |                                 |              |                         | New States | 0,25 001                  |                |
| 1402                                    | I V                                            |                                         |             | 166                             | 57.2         | 0 6.                    | 30         | 1 21 1                    |                |
| 1407                                    | No Flow                                        |                                         |             | 166                             | 57.3         | 0 6.                    | 35         | 2,25 gal.                 |                |
| 1413                                    | thru cell                                      |                                         |             | 166                             | 57,4         | 0 6.                    | 31         | 4. gal.                   |                |
|                                         |                                                |                                         |             |                                 |              |                         |            | <i>J</i>                  |                |
|                                         |                                                |                                         |             |                                 |              |                         |            |                           |                |
| 1435                                    | Sampl                                          |                                         |             |                                 |              |                         |            |                           |                |
| Laborato                                | urge Methód:<br><br>pry Informat               | ion                                     | Bail        | _                               |              |                         |            | moved: <u>4, 3</u>        | 50 (gal)       |
| Sample ID                               |                                                | # & Ty<br>Contai                        | ners        | Preservati<br>Type              | ve /         | Labora                  | огу        | Analyses                  |                |
| nw - 10                                 | )                                              | 3-40ml                                  | UOH'S       | YES HO                          | LN           | CL                      | 1          | TPHG                      |                |
| nW-10                                   | ) J                                            | 3 - 40ml                                |             | YES HO                          | L N          | CL                      |            | TPH- Pai                  | nt Thinner     |
| 74-101                                  |                                                | 2-60ml                                  | UOH'S       | None                            | N            | CL                      |            | TPHD                      |                |
| *************************************** | Well Condition                                 | *************************************** |             | flange<br>6.24                  |              |                         |            |                           |                |

# STAT

#### CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

|                        |                |                               | Wat         | er Samplir                      | g D                          | ata Sl      | neet          |                              |                |  |
|------------------------|----------------|-------------------------------|-------------|---------------------------------|------------------------------|-------------|---------------|------------------------------|----------------|--|
| Project                | Name: Pi       | ekson's B                     | uilding     | Center                          | Date/Time:                   |             | 1-14-05       |                              |                |  |
| Project                | No.: 0         | 91148,10                      | 0           |                                 | Sampler Name: David R. Paine |             |               | Paine                        |                |  |
| Locatio                |                | ukeka C                       |             |                                 | Sample Type: Graind water    |             |               |                              |                |  |
| Well #:                |                | W-102                         |             |                                 | Wea                          | ther        | 0             | vercust                      |                |  |
| Hydro                  | NA             | Key                           | Neede       |                                 |                              | lphin       |               |                              |                |  |
| Total We               |                | Initial Depth<br>Water (feet) |             | Height of Wate<br>Column (feet) |                              | × 0.6       | 53 gal/ft (4- | inch well) /<br>inch well) = | 1 Casing Volum |  |
| 14.1                   | 0 -            | 5.38                          |             | 8.72                            |                              | × 0         | .163          |                              | 1.42           |  |
| Time                   | DO<br>(ppm)    | CO <sub>2</sub><br>(ppm)      | ORP<br>(mV) | EC<br>(uS/cm)                   |                              | emp<br>(°F) | рН            | Water<br>Removed<br>(gal)    | Comments       |  |
| 0930                   | (1.08)         |                               |             |                                 |                              |             |               | 0 gal.                       |                |  |
| 122E                   |                | 40                            | 91          |                                 |                              |             |               | 0,25 001                     |                |  |
| 1236                   |                |                               |             | 661                             | 5                            | 4.9°        | 6.02          | 0,25 gal.                    |                |  |
| 1242                   | No Flow        |                               |             | 658                             | 55                           | 5.10        | 6.04          | 13 ggl.                      |                |  |
| 1248                   | than cell      |                               |             | 657                             |                              | 1.60        | 6.05          |                              |                |  |
|                        |                |                               |             |                                 |                              |             |               |                              |                |  |
| 1345                   | Sampl          | e Time                        |             |                                 |                              |             |               |                              |                |  |
|                        | ory Informat   |                               | Bail        | -                               |                              | Tota        | l Volume      | Removed: 4,3                 | 50 (gal)       |  |
| Sarr                   | iple ID        | # & Type of<br>Containers     |             | Preservati<br>Type              | ve/                          | Laboratory  |               |                              | Analyses       |  |
| nw - 1                 | 02             | 3-40ml                        | UOH'S       | YES HO                          | 7                            | NC          | L             | TPHG                         |                |  |
| 141-11                 |                | 3 - 40ml                      |             | YES HO                          |                              | NC          | L             | TPH- Pa                      | int Thinner    |  |
| nw-102                 |                | 2-60ml                        |             | None                            | and the                      | NC.         | L             | TPHD                         |                |  |
| nw-102 1. For soil Jak |                | None                          |             | Bro -                           | Jet                          | Bug o       | ount          |                              |                |  |
|                        | Well Condition | on: On a                      | broken      | Flange                          |                              |             |               |                              |                |  |
| )                      |                | Recharge                      | d to        | 5,39                            | 94                           | Sar         | np/e_         | Time                         |                |  |

| . 0 |     | 71  | V  |
|-----|-----|-----|----|
| 2   | Y   | - 1 | 1/ |
| (   | - 1 | 1 1 | /  |

### CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

|          |                              |                             | Wat         | ter Samp                 | ling D         | ata S       | heet                            |                           |                 |
|----------|------------------------------|-----------------------------|-------------|--------------------------|----------------|-------------|---------------------------------|---------------------------|-----------------|
| Project  | t Name: <u>P</u> i           | erson's B                   | parlding    | Center                   | _ Dat          | e/Time      | : <u></u>                       | 1-14-05                   |                 |
| Project  |                              | 91148.10                    | _           |                          |                | pler N      | ame: D                          | avid R. F                 | ain-e           |
| Location | on: E                        | ureka, C                    | A           |                          | Sam            | ple Ty      | pe: G                           | round wa                  |                 |
| Well#    |                              | W-103                       |             |                          | Wea            | ther        | 0                               | vercast                   |                 |
| Hydro    | carbon Thicl                 | kness/Depth                 | (feet):     | NA                       | Key            | Neede       | 13                              | 1022                      | phin            |
| (fe      | ell Depth<br>et)             | Initial Depth<br>Water (fee |             | Height of V<br>Column (f |                | 0.6         | 53 gal/ft (2-i<br>53 gal/ft (4- |                           | 1 Casing Volume |
| 14.0     | -                            | 5.44                        | =           | 8.61                     |                | × 0         | .163                            | =                         | 1.40            |
| Time     | DO<br>(ppm)                  | CO <sub>2</sub><br>(ppm)    | ORP<br>(mV) | EC<br>(uS/cn             |                | emp<br>(°F) | рН                              | Water<br>Removed<br>(gal) | Comments        |
| 0938     | 0.98                         |                             |             |                          |                |             |                                 | 0 agl                     |                 |
| 13/2     |                              | 50                          | 103         |                          |                |             |                                 | 0.25 gal.                 | 10000           |
| 1319     | V                            |                             |             | 277                      | 5              | 5.10        | 6.06                            | 0.25 gal.                 |                 |
| 1324     | No Flow                      |                             |             | 288                      |                | 5,3°        | 6,12                            | 3 gal.                    |                 |
| 1330     | then cell                    |                             |             | 291                      | 5              | 5,10        | 6.13                            | 4.50991                   |                 |
|          |                              |                             |             |                          |                |             |                                 |                           |                 |
|          |                              |                             |             |                          |                |             |                                 |                           |                 |
| 1425     | Samo                         | e Time                      |             |                          |                |             |                                 |                           |                 |
|          | rge Method:_<br>ory Informat | Hand 1                      | 3au /       | _                        |                | Total       | l Volume I                      | Removed: 4,5              | o (gal)         |
| Sam      | iple ID                      | # & Type of<br>Containers   |             | All States               | Preservative / |             | boratory                        | Analyses                  |                 |
| mw - 1   | 03                           | 3-40ml UDA'S                |             | YES .                    | HCL            | NCL         |                                 | TPHG                      |                 |
| nw-1     | 03                           | 3 - 40ml UOH'S              |             | YES HCL                  |                | NCL         |                                 | TPH- Paint Thinner        |                 |
| nu-1     | 03                           | 2-60ml UUN'S                |             | None                     |                | NCL         |                                 | TPHD                      |                 |
| nu - 1   | 103                          | 1-902, 50                   |             | Non-e                    |                | Bro- J.7    |                                 |                           |                 |
|          | Well Condition               |                             |             |                          |                |             |                                 |                           |                 |
|          | Remar                        |                             | 1 1         |                          |                |             |                                 |                           |                 |
|          |                              | Kecharge                    | 9 10        | 5,44                     | 57             | Sam         | pla                             | Time                      |                 |

# STAN

### CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shrinfo@shn-engr.com

| Location:   Eureka CA     Sample Type:   Grand Weather   Evencas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R. Paine water  Dolphin  1 Casing Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Location:   Eurekg CA   Sample Type:   Grand Well #:   MW-104   Weather   Evences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $weten$ $\frac{1}{2} = \frac{1 \text{ Casing Volume}}{(\text{gal})}$ $= \frac{1 \cdot 38}{1 \cdot 38}$ $\text{Vater}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Well #:         MW-104         Weather         Deencas           Hydrocarbon Thickness/Depth (feet):         NA         Key Needed:         VE S           Total Well Depth (feet):         Initial Depth to Water (feet):         Height of Water Column (feet):         x 0.163 gal/ft (2-inch well):           13,25         -         4.76         =         0.49         x 0.163 gal/ft (2-inch well):           13,25         -         4.76         =         0.49         x 0.163 gal/ft (2-inch well):           13,25         -         4.76         =         0.49         x 0.163           Time         DO (ppm) (ppm) (mV) (uS/cm)         (°F)         pH Ren (get)         PH Ren (get)           11c6         45         74         0.25         6.08 1.5°           1121         No Flow         211         53,7° 6.06 3         6.11           126         4mu Cell         268         53,8° 6.11         4.15           125         Sample Time         Total Volume Removed                                                                                                                                                                                                                    | $\frac{1}{2} \frac{1}{2} \frac{1}$ |  |
| Well #:         MW-104         Weather         Overcas           Hydrocarbon Thickness / Depth (feet):         NA         Key Needed:         VES           Total Well Depth (feet):         Initial Depth to Water (feet):         Height of Water Column (feet):         x 0.163 gal/ft (2-inch well):           13,25         -         4.76         =         B. 49         x 0.163 gal/ft (2-inch well):           Time         DO (ppm)         CO2 (ppm)         ORP (mV)         EC (uS/cm)         Temp (°F)         pH         Wenther           C916         1.73         O         O         IO         O         O         IO         O         O         O         IO         O         O         IO         IO< | $\frac{D_0/\rho h_{i'n}}{D_0/\rho} = \frac{1 \text{ Casing Volume}}{(\text{gal})}$ $= \frac{1 \cdot 38}{\text{Vater}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Total Well Depth (feet)    Initial Depth to Water (feet)   Height of Water Column (feet)   X   0.653 gal/ft (2-inch well)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{1} = \frac{1 \text{ Casing Volume}}{(\text{gal})} = \frac{1 \cdot 38}{4 \cdot 38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) = (gal)<br>  = [/·38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Time DO CO2 ORP EC Temp pH Ren (9) (9) (9) (1.73) O O.25  [106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Time   DO   CO2   ORP   EC   Temp   pH   Ren   (graph   1.73 )   O   O.25     106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 11/5   269   53,6°   6.08   1.5°     121   No Flow   271   53,7°   6.06   3     126   then cell   268   53,8°   6.11   4.15     215   Sample Time   Furge Method:   Hand Bat   Total Volume Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 11/5   269   53,6°   6.08   1.5°     121   No Flow   271   53,7°   6.06   3     126   then cell   268   53,8°   6.11   4.15     215   Sample Time   Furge Method:   Hand Bat   Total Volume Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 11.15 V 269 53.6° 6.08 1.5° 12.1 No Flow 271 53.7° 6.06 3 12.6 they cell 268 53.8° 6.11 4.15  21.5 Sample Time  Furge Method: Hand Bat 1 Total Volume Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 121 No Flow 271 53,7° 6.06 3  126 then cell 268 53,8° 6.11 4,25  215 Sample Time  Furge Method: Hand Bat 1 Total Volume Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 215 Sample Time  Purge Method: Hand Bat 1  Total Volume Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | agl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 215 Sample Time  Furge Method: Hand Barl Total Volume Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Furge Method: Hand Bat! Total Volume Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d: 4.25 (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| aboratory Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ··· <u>4,25</u> (8 <sup>m</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Sample ID # & Type of Preservative / Laboratory Containers Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| OW-104 3-40ml UDN'S YES HCL NCL TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TPHG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| W-104 3-40ml von's YES HCL NCL TPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TPH- Paint Thinner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 14-104 2-60ml UUH'S NONE NCL T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Well Condition: Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

# STAT

### CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shrinfo@shn-engr.com

| Project  | Name: P                     | ee can's T                 | Berlding     | Center                                                                                                         | Date    | e/Time:     | . /                              | -14-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |
|----------|-----------------------------|----------------------------|--------------|----------------------------------------------------------------------------------------------------------------|---------|-------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Project  |                             |                            |              | CENTER                                                                                                         |         | pler Na     | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>D</i> .                                    |
| Locatio  |                             | 91148.1                    |              | er de distriction de la constant de |         | · 1         | 0000                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paine                                         |
| Well #   | 98 Table                    | CLEEKS, C                  | .H           |                                                                                                                |         | iple Typ    | 5,027                            | 2.50 mm 2.50 m | aten                                          |
|          |                             | W-105                      | 75 N         |                                                                                                                |         | ther        |                                  | eccust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , <u>, , , , , , , , , , , , , , , , , , </u> |
| nyaro    | carbon Truc                 | kness/Depth                | (reet):      | NH                                                                                                             | Key     | Needed      | 1: <u>- </u>                     | es Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lphin                                         |
| Total We |                             | Initial Dept<br>Water (fee |              | Height of Wat<br>Column (feet                                                                                  |         | 0.65        | 3 gal/ft (2-i:<br>53 gal/ft (4-i |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Casing Volum                                |
| 13.4     | 0 -                         | 4.40                       | ] = [        | 9.00                                                                                                           |         | × 0         | 163                              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.47                                          |
| Time     | DO<br>(ppm)                 | CO <sub>2</sub><br>(ppm)   | ORP<br>(mV)  | EC<br>(uS/cm)                                                                                                  |         | emp<br>(°F) | рН                               | Water<br>Removed<br>(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comments                                      |
| 0924     | 5.02                        | D                          |              |                                                                                                                |         |             |                                  | 0 901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |
| 1147     |                             | 15                         | 65           |                                                                                                                |         |             |                                  | 0 gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |
| 1155     | 1                           |                            |              | 145                                                                                                            | 5       | 2,8°        | 6.29                             | 0.25 gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
| 1200     | No Flow                     |                            |              | 149                                                                                                            | 5       | 30          | 6.33                             | 3 Gal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |
| 1206     | than cell                   |                            |              | 149                                                                                                            | 3       | 3°          | 6.34                             | 4.50 991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
|          |                             |                            |              |                                                                                                                |         |             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| 300      |                             | e Tim                      |              |                                                                                                                |         |             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|          | rge Methód:<br>ory Informat |                            | Bar I        |                                                                                                                |         | Total       | Volume R                         | lemoved: <u>4,</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>50</b> (gal)                               |
| Sam      | ple ID                      | # & Type of<br>Containers  |              | Preservative /<br>Type                                                                                         |         | Lab         | oratory                          | Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
| nw - 10  | 5                           | 3-40m1                     | 3-40ml UDM'S |                                                                                                                | VES HCL |             | 4)                               | TPHG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
| 1W-10    | 5                           | 3 - 40ml VON'S             |              | YES HCL                                                                                                        |         | NCL         |                                  | TPH- Paint Thinn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
| 1W-10    | 5                           | 2-60ml                     | UOH'S        | None                                                                                                           |         | NCL         |                                  | TPHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
|          | Well Conditi<br>Remar       |                            | brokin       | Clanga                                                                                                         |         |             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |

# CONSULTING ENGINEERS & GEOLOGISTS, INC. 812 W. Wabash · Eureka, CA 95501-2138 · 707/441-8855 · FAX: 707/441-8877 ·shninfo@shn-engr.com

| Project  | Name: Pie       | Ba cinos                        | rlding      | Center                          | Date/  | Time       | : <u>L</u>                         | -14-05                    |                |  |
|----------|-----------------|---------------------------------|-------------|---------------------------------|--------|------------|------------------------------------|---------------------------|----------------|--|
| Project  |                 | 91148,100                       | _           |                                 | Samp   | ler Na     | ame: Da                            | id R. F                   | ain-c          |  |
| Locatio  |                 | Keka, CH                        |             |                                 | Samp   | le Typ     | oe: Ga                             | and wa                    |                |  |
| Well#:   |                 | V-106                           |             |                                 | Weatl  | ner        | _                                  | ercast                    |                |  |
| Hydro    |                 | ness/Depth (f                   | eet):       | Y A                             | Key N  | leede      | d: <u>y</u> ₤                      | s Dol                     | phin           |  |
| Fotal We | il Depth<br>et) | Initial Depth t<br>Water (feet) | o =         | Height of Wate<br>Column (feet) |        |            | i3 gal/ft (2-in<br>53 gal/ft (4-ir |                           | 1 Casing Volum |  |
| 14.73    | 5 -             | 6.29                            | _] = [      | 7,86                            | x      | 0          | .163                               |                           | 1.28           |  |
| Time     | DO<br>(ppm)     | CO <sub>2</sub><br>(ppm)        | ORP<br>(mV) | EC<br>(uS/cm)                   |        | mp<br>F)   | рН                                 | Water<br>Removed<br>(gal) | Comments       |  |
| 9904     | 1.65            |                                 |             |                                 |        |            |                                    | O gal                     |                |  |
| 0754     |                 | 40                              | 114         |                                 |        |            |                                    | 0,25 991                  |                |  |
| 1001     | V               |                                 |             | 438                             | 55.    | 20         | 6.29                               | 0,25 gal.                 |                |  |
| cce      | No Flow         |                                 |             | 436                             |        | , 7°       | 6.41                               | 275001                    |                |  |
| 1010     | thru cell       |                                 |             | 419                             | 53     | 80         | 6.46                               | 4 991                     |                |  |
| 1015     |                 |                                 |             | 417                             | 53     | .7°        | 6.49                               | 4 991<br>5.5 991.         |                |  |
|          |                 |                                 |             |                                 |        |            |                                    |                           |                |  |
|          |                 |                                 |             |                                 |        |            |                                    |                           |                |  |
| 1100     | Samo            | e Time                          |             |                                 |        |            |                                    |                           |                |  |
| Р        | urge Method:    | Hand I                          | 301/        | 100                             | 10     | Tota       | al Volume R                        | temoved: <u>5</u> ,       | 25 (gal)       |  |
|          | ory Informat    |                                 | no of       | Procesulat                      | ino l  | 1 -        | horatory                           |                           | Analyses       |  |
| Sai      | mple ID         | # & Ty<br>Contai                |             | Preservative /<br>Type          |        | Laboratory |                                    | Analyses                  |                |  |
| nw - 1   | 06              | 3-40ml                          | UOH'S       | Vi Contract                     | CL NCL |            | L                                  | TPHG                      | TPHG           |  |
| nw-1     |                 | 3 - 40ml                        | W. CO.      |                                 | CL NCL |            |                                    | TPH- Paint Think          |                |  |
| nw-1     |                 | 2-60ml                          |             | None                            |        | NC         | 20                                 | TPHD                      |                |  |
|          |                 | 10                              |             |                                 |        | -          |                                    | 1                         |                |  |
|          | Well Condit     | ion: 7 4                        |             | out fla                         |        |            |                                    |                           |                |  |

# STAT

### CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shninfo@shn-engr.com

| Project<br>Project |                         | 91148,10                     |             | Date/Time:<br>Sampler Name:     |       | 000                                                                                                            | David R. Paine |                              |                         |
|--------------------|-------------------------|------------------------------|-------------|---------------------------------|-------|----------------------------------------------------------------------------------------------------------------|----------------|------------------------------|-------------------------|
| Locatio            |                         | GREKG C                      |             |                                 | Samp  | le Type                                                                                                        | : <u> </u>     |                              | ten                     |
| Well#:             |                         | W-107                        | 8           |                                 | Weat  | her                                                                                                            | 0              | vericust                     |                         |
| Hydro              |                         | ness/Depth (                 | feet):      | NA                              | Key î | Veeded:                                                                                                        |                |                              | lphin                   |
| Total We           | et)                     | Initial Depth<br>Water (feet | <u> </u>    | Height of Wate<br>Column (feet) |       | 0.653                                                                                                          |                | inch well) /<br>inch well) = | 1 Casing Volum<br>(gal) |
| 14.13              | -                       | 5,00                         | = [         | 1.12                            |       | υ,                                                                                                             | دءا            | =                            | [7,47                   |
| Time               | DO<br>(ppm)             | CO <sub>2</sub><br>(ppm)     | ORP<br>(mV) | EC<br>(uS/cm)                   |       | mp<br>F)                                                                                                       | рН             | Water<br>Removed<br>(gal)    | Comments                |
| 0910               | 0.99                    |                              |             |                                 |       |                                                                                                                |                | 0 gal.                       |                         |
| 1019               |                         | 40                           | 111         |                                 |       |                                                                                                                |                | 0.25 gal                     |                         |
| 1029               |                         |                              |             | 458                             | 55    | .5                                                                                                             | 6.07           | 1,50 9 9                     |                         |
| 1034               | No Flow                 |                              |             | 445                             | 55    | .80                                                                                                            | 6.12           | 3 ggl.                       |                         |
| 1040               | thru cell               |                              |             | 400                             | 55    | 5,90                                                                                                           | 6.14           | 450 991                      |                         |
| 10 46              |                         |                              |             | 377                             | 53    | ,80                                                                                                            | 6.21           |                              |                         |
| 1051               |                         |                              |             | 369                             | 57    | 0                                                                                                              | 621            | 1.50 gg 1.                   |                         |
|                    |                         |                              |             |                                 |       |                                                                                                                |                |                              |                         |
| 1135               | Sample                  | e Time                       |             |                                 |       |                                                                                                                |                |                              |                         |
|                    | irge Method: _          |                              | Barl .      | _8                              |       | Total                                                                                                          | Volume         | Removed: 7,.                 | 50 (gal)                |
| 7.0                | ory Informat<br>uple ID | # & Ty<br>Conta              |             | Preservati<br>Type              | ve/   | Lab                                                                                                            | oratory        |                              | Analyses                |
| mω - 1             | 07                      | 3-40m1                       | UON'S       | yes Ho                          | 2     | NCL                                                                                                            |                | TPHG                         |                         |
| nw - 107           |                         | 3 - 40ml von's               |             | 10.70                           | HCL 1 |                                                                                                                |                | TPH- Paint Thin              |                         |
| mu - 10            |                         | 2-60ml                       |             | None                            |       | NCL                                                                                                            |                | TPHD                         |                         |
|                    | Well Conditi            | on: Good                     | 33-10       |                                 |       |                                                                                                                |                |                              | S. 3180/7               |
|                    | Remar                   | 86:                          |             |                                 | 0.50  | 17 to 18 |                |                              |                         |
| N.                 |                         | Recharge                     | ed to       | 5,02                            | ~1    |                                                                                                                | 1              | Time                         | time;                   |

|            | COLOUR # LICENS       |
|------------|-----------------------|
| 091148.100 | Collected On: 10/8/04 |
|            | )1148.100             |

PIERSON'S BUILDING CENTER

Client Name:

Eureka municipal sewer system.

33 GALLONS 11/18/04 Amount Discharged: Date Discharged:

Certified by: DAVID R. PAINE

SHN CONSULTING ENGINEERS & GEOLOGISTS, INC. City of Eureka Wastewater Discharge Permit #65



#### Table B-1 Historic Groundwater Elevations Pierson Building Center, Eureka, California

|               |             | Top of Casing           | Depth to                 | Groundwater |
|---------------|-------------|-------------------------|--------------------------|-------------|
| Sample        | Date        | Elevation               | Groundwater <sup>2</sup> | Elevation   |
| Location      | Measured    | (feet MSL) <sup>1</sup> | (feet)                   | (feet MSL)  |
| MW-101        | 1/20/2003   | 15.69                   | 6.07                     | 9.62        |
| W1 VV - 1 U 1 | 2/10/2003   | 13.09                   |                          |             |
|               |             |                         | 6.10                     | 9.59        |
|               | 2/24/2003   |                         | 5.93                     | 9.76        |
|               | 3/10/2003   |                         | 6.15                     | 9.54        |
|               | 3/24/2003   |                         | 5.98                     | 9.71        |
|               | 4/7/2003    |                         | 5.80                     | 9.89        |
|               | 4/21/2003   |                         | 5.78                     | 9.91        |
|               | 5/5/2003    |                         | 5.64                     | 10.05       |
|               | 7/7/2003    |                         | 6.64                     | 9.05        |
|               | 10/6/2003   |                         | 7.31                     | 8.38        |
|               | 1/5/2004    |                         | 4.92                     | 10.77       |
|               | 4/5/2004    |                         | 4.68                     | 11.01       |
|               | 7/7/2004    |                         | 6.98                     | 8.71        |
|               | 10/8/2004   |                         | 7.61                     | 8.08        |
|               | 1/14/2005   |                         | 6.21                     | 9.48        |
| MW-102        | 1/20/2003   | 14.81                   | 5.25                     | 9.56        |
|               | 2/10/2003   |                         | 5.28                     | 9.53        |
|               | 2/24/2003   |                         | 5.08                     | 9.73        |
|               | 3/10/2003   |                         | 5.32                     | 9.49        |
|               | 3/24/2003   |                         | 5.14                     | 9.67        |
|               | 4/7/2003    |                         | 4.94                     | 9.87        |
|               | 4/21/2003   |                         | 4.94                     | 9.87        |
|               | 5/5/2003    |                         | 4.78                     | 10.03       |
|               | 7/7/2003    |                         | 5.80                     | 9.01        |
|               | 10/6/2003   |                         | 6.50                     | 8.31        |
|               | 1/5/2004    |                         | 4.50                     | 10.31       |
|               | 4/5/2004    |                         | 4.12                     | 10.69       |
|               | 7/7/2004    |                         | 6.12                     | 8.69        |
|               | 10/8/2004   |                         | 6.77                     | 8.04        |
|               | 1/14/2005   |                         | 5.38                     | 9.43        |
| MW-103        | 1/20/2003   | 14.83                   | 5.27                     | 9.56        |
|               | 2/10/2003   |                         | 5.31                     | 9.52        |
|               | 2/24/2003   |                         | 5.12                     | 9.71        |
|               | 3/10/2003   |                         | 5.36                     | 9.47        |
|               | 3/24/2003   |                         | 5.16                     | 9.67        |
|               | 4/7/2003    |                         | 4.99                     | 9.84        |
|               | 4/21/2003   |                         | 4.98                     | 9.85        |
|               | 5/5/2003    |                         | 4.82                     | 10.01       |
|               | 7/7/2003    |                         | 5.84                     | 8.99        |
|               | 10/6/2003   |                         | 6.53                     | 8.30        |
|               | 1/5/2004    |                         | 4.85                     | 9.98        |
|               | 4/5/2004    |                         | 4.42                     | 10.41       |
|               | 7/7/2004    |                         | 6.15                     | 8.68        |
|               | 10/8/2004   |                         | 6.79                     | 8.04        |
|               | 1/14/2005   |                         | 5.44                     | 9.39        |
|               | 1/ 11/ 2000 |                         |                          |             |

### Table B-1 Historic Groundwater Elevations Pierson Building Center, Eureka, California

|          |           | Top of Casing           | Depth to                 | Groundwater |
|----------|-----------|-------------------------|--------------------------|-------------|
| Sample   | Date      | Elevation               | Groundwater <sup>2</sup> | Elevation   |
| Location | Measured  |                         |                          | (feet MSL)  |
|          |           | (feet MSL) <sup>1</sup> | (feet)                   | · ·         |
| MW-104   | 1/20/2003 | 14.09                   | 4.62                     | 9.47        |
|          | 2/10/2003 |                         | 4.64                     | 9.45        |
|          | 2/24/2003 |                         | 4.45                     | 9.64        |
|          | 3/10/2003 |                         | 4.66                     | 9.43        |
|          | 3/24/2003 |                         | 4.49                     | 9.60        |
|          | 4/7/2003  |                         | 4.31                     | 9.78        |
|          | 4/21/2003 |                         | 4.32                     | 9.77        |
|          | 5/5/2003  |                         | 4.16                     | 9.93        |
|          | 7/7/2003  |                         | 5.18                     | 8.91        |
|          | 10/6/2003 |                         | 5.85                     | 8.24        |
|          | 1/5/2004  |                         | 4.26                     | 9.83        |
|          | 4/5/2004  |                         | 3.87                     | 10.22       |
|          | 7/7/2004  |                         | 5.48                     | 8.61        |
|          | 10/8/2004 |                         | 6.10                     | 7.99        |
|          | 1/14/2005 |                         | 4.76                     | 9.33        |
| MW-105   | 1/20/2003 | 13.78                   | 4.25                     | 9.53        |
|          | 2/10/2003 |                         | 4.28                     | 9.50        |
|          | 2/24/2003 |                         | 4.04                     | 9.74        |
|          | 3/10/2003 |                         | 4.31                     | 9.47        |
|          | 3/24/2003 |                         | 4.13                     | 9.65        |
|          | 4/7/2003  |                         | 3.93                     | 9.85        |
|          | 4/21/2003 |                         | 3.94                     | 9.84        |
|          | 5/5/2003  |                         | 3.78                     | 10.00       |
|          | 7/7/2003  |                         | 4.82                     | 8.96        |
|          | 10/6/2003 |                         | 5.52                     | 8.26        |
|          | 1/5/2004  |                         | 3.55                     | 10.23       |
|          | 4/5/2004  |                         | 3.30                     | 10.48       |
|          | 7/7/2004  |                         | 5.14                     | 8.64        |
|          | 10/8/2004 |                         | 5.78                     | 8.00        |
|          | 1/14/2005 |                         | 4.40                     | 9.38        |
| MW-106   | 1/20/2003 | 15.59                   | 6.09                     | 9.50        |
|          | 2/10/2003 |                         | 6.12                     | 9.47        |
|          | 2/24/2003 |                         | 4.65                     | 10.94       |
|          | 3/10/2003 |                         | 6.19                     | 9.40        |
|          | 3/24/2003 |                         | 5.99                     | 9.60        |
|          | 4/7/2003  |                         | 5.86                     | 9.73        |
|          | 4/21/2003 |                         | 5.80                     | 9.79        |
|          | 5/5/2003  |                         | 5.69                     | 9.90        |
|          | 7/7/2003  |                         | 6.64                     | 8.95        |
|          | 10/6/2003 |                         | 7.32                     | 8.27        |
|          | 1/5/2004  |                         | 6.00                     | 9.59        |
|          | 4/5/2004  |                         | 5.51                     | 10.08       |
|          | 7/7/2004  |                         | 6.95                     | 8.64        |
|          | 10/8/2004 |                         | 7.58                     | 8.01        |
|          | 1/14/2005 |                         | 6.29                     | 9.30        |

### Table B-1 Historic Groundwater Elevations Pierson Building Center, Eureka, California

| Carr1.      |              | Top of Casing           | Depth to                 | Groundwater |
|-------------|--------------|-------------------------|--------------------------|-------------|
| Sample      | Date         | Elevation               | Groundwater <sup>2</sup> | Elevation   |
| Location    | Measured     | (feet MSL) <sup>1</sup> | (feet)                   | (feet MSL)  |
| MW-107      | 1/20/2003    | 14.28                   | 4.83                     | 9.45        |
| 1,11,1      | 2/10/2003    | 11,20                   | 4.85                     | 9.43        |
|             | 2/24/2003    |                         | 5.94                     | 8.34        |
|             | 3/10/2003    |                         | 4.91                     | 9.37        |
|             | 3/24/2003    |                         | 4.72                     | 9.56        |
|             | 4/7/2003     |                         | 4.57                     | 9.71        |
|             | 4/21/2003    |                         | 5.53                     | 8.75        |
|             | 5/5/2003     |                         | 4.41                     | 9.87        |
|             | 7/7/2003     |                         | 5.39                     | 8.89        |
|             | 10/6/2003    |                         | 6.07                     | 8.21        |
|             | 1/5/2004     |                         | 4.71                     | 9.57        |
|             | 4/5/2004     |                         | 4.28                     | 10.00       |
|             | 7/7/2004     |                         | 6.69                     | 7.59        |
|             | 10/8/2004    |                         | 6.31                     | 7.97        |
|             | 1/14/2005    |                         | 5.00                     | 9.28        |
| MW-2A       | 1/20/2003    | 16.81                   | 7.21                     | 9.60        |
|             | 2/10/2003    |                         | 7.24                     | 9.57        |
|             | 2/24/2003    |                         | 7.06                     | 9.75        |
|             | 3/10/2003    |                         | 7.30                     | 9.51        |
|             | 3/24/2003    |                         | 7.13                     | 9.68        |
|             | 4/7/2003     |                         | 6.94                     | 9.87        |
|             | 4/21/2003    |                         | 6.93                     | 9.88        |
|             | 5/5/2003     |                         | 6.79                     | 10.02       |
|             | 7/7/2003     |                         | 7.79                     | 9.02        |
|             | 10/6/2003    |                         | 8.45                     | 8.36        |
|             | 1/5/2004     |                         | 6.36                     | 10.45       |
|             | 4/5/2004     |                         | 6.08                     | 10.73       |
|             | 7/7/2004     |                         | 8.13                     | 8.68        |
| MW-3        | 1/20/2003    | 15.13                   | 5.65                     | 9.48        |
|             | 2/10/2003    |                         | 5.63                     | 9.50        |
|             | 2/24/2003    |                         | 5.46                     | 9.67        |
|             | 3/10/2003    |                         | 5.73                     | 9.40        |
|             | 3/24/2003    |                         | 5.58                     | 9.55        |
|             | 4/7/2003     |                         | 5.94                     | 9.19        |
|             | 4/21/2003    |                         | 5.34                     | 9.79        |
|             | 5/5/2003     |                         | 5.23                     | 9.90        |
|             | 7/7/2003     |                         | 6.26                     | 8.87        |
|             | 10/6/2003    |                         | 6.86                     | 8.27        |
|             | 1/5/2004     |                         | 5.53                     | 9.60        |
|             | 4/5/2004     |                         | 5.11                     | 10.02       |
|             | 7/7/2004     |                         | 6.72                     | 8.41        |
| 1. MSL: Mea | an Sea Level | 2. Below to             | op of casing             |             |

Table B-2 Historic Groundwater Analytical Results Pierson Building Center, Eureka, California

| Sample   | Date     | TPHD <sup>1</sup>        | TPHPT <sup>3</sup>     | TPHG <sup>4</sup>       | $\mathbf{B}^5$ | $\mathbf{T}^5$ | $\mathbf{E}^{5}$ | X <sup>5</sup> | Dissolved<br>Iron | Nitrate             | Nitrite | Ammonia<br>Nitrogen | Phosphate | Potassium | Total Organic Carbon |
|----------|----------|--------------------------|------------------------|-------------------------|----------------|----------------|------------------|----------------|-------------------|---------------------|---------|---------------------|-----------|-----------|----------------------|
| Location |          | (ug/L) <sup>2</sup>      | (ug/L)                 | (ug/L)                  | (ug/L)         | (ug/L)         | (ug/L)           | (ug/L)         | (ug/L)            | (mg/L) <sup>6</sup> | (mg/L)  | (mg/L)              | (mg/L)    | (ug/L)    | (mg/L)               |
| MW-101   | 3/29/01  | < <b>50</b> <sup>7</sup> | < 50                   | 120                     | < 0.50         | < 0.50         | < 0.50           | < 0.50         | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 1/20/03  | 130 <sup>8</sup>         | 880 <sup>9</sup>       | 1,400 <sup>10</sup>     | < 0.50         | 2.3            | 42               | 89             | 1,000             | < 0.10              | < 0.20  | < 0.20              | 2.3       | 8,500     | 3.85                 |
|          | 2/10/03  | 340 <sup>8,12</sup>      | 2,000 <sup>9</sup>     | 3,300 <sup>10</sup>     | <2.5           | 2.5            | 110              | 318            | 800               | < 0.10              | < 0.20  | < 0.20              | 1.3       | 8,600     | 4.10                 |
|          | 2/24/03  | 320 <sup>8,12</sup>      | 2,500 <sup>9</sup>     | 4,200 <sup>10</sup>     | <2.5           | <2.5           | 77               | 199            | 1,100             | < 0.10              | < 0.50  | 1.3                 | 1.8       | 7,900     | 3.93                 |
|          | 3/10/03  | 350 <sup>8</sup>         | 3,500 <sup>9</sup>     | 4,400 <sup>10</sup>     | <1.0           | 1.9            | 140              | 431            | 1,400             | < 0.10              | < 0.20  | < 0.20              | 1.7       | 8,400     | 3.83                 |
|          | 3/24/03  | 3508,12                  | 1,300 <sup>9</sup>     | 2,400 <sup>10</sup>     | <1.0           | 1.7            | 120              | 343            | 1,700             | < 0.10              | < 0.50  | 0.28                | 1.4       | 8,300     | 3.69                 |
|          | 4/7/03   | 400 <sup>8</sup>         | 1,200 <sup>9</sup>     | 1,800 <sup>10</sup>     | <1.0           | 1.2            | 100              | 278            | 1,700             | < 0.10              | < 0.10  | < 0.20              | 1.4       | 8,500     | 3.66                 |
|          | 4/21/03  | 360 <sup>8</sup>         | 1,300 <sup>9</sup>     | 2,000 <sup>10</sup>     | < 0.50         | 0.91           | 80               | 149            | 1,300             | < 0.10              | < 0.20  | < 0.20              | 1.3       | 8,000     | 3.82                 |
|          | 5/5/03   | 3208,12                  | 1,800 <sup>9</sup>     | 2,700 <sup>10</sup>     | <1.0           | <1.0           | 46               | 67.8           | 2,200             | < 0.10              | < 0.20  | <0.20               | 0.93      | 8,100     | 3.55                 |
|          | 7/7/03   | 550 <sup>8</sup>         | 4,3009                 | 5,900 <sup>10</sup>     | <2.0           | <2.0           | 98               | 118.4          | 2,300             | < 0.10              | < 0.10  | < 0.20              | 1.7       | 6,600     | 3.54                 |
|          | 10/06/03 | 370 <sup>8</sup>         | 1,200 <sup>9</sup>     | 3,300 <sup>10</sup>     | < 0.50         | 1.3            | 17               | 18.1           | 3,100             | < 0.10              | < 0.10  | 0.46                | 1.6       | 7,100     | 4.05                 |
|          | 1/5/04   | 1,400 <sup>8,12</sup>    | 23,000 <sup>9</sup>    | 18,000 <sup>10</sup>    | NA             | NA             | NA               | NA             | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 4/5/04   | 6708,12                  | 3,700 <sup>9</sup>     | 5,400 <sup>10</sup>     | < 0.50         | < 0.50         | 43               | 74.8           | 500               | < 0.10              | < 0.10  | < 0.20              | 0.48      | <5,000    | 2.10                 |
|          | 7/7/04   | 1,100 <sup>8</sup>       | 4,6009                 | 6,400 <sup>11</sup>     | <1.0           | <1.0           | 5.7              | 3.0            | 2,000             | < 0.10              | < 0.10  | < 0.20              | 0.78      | <5,000    | 2.60                 |
|          | 10/8/04  | 550 <sup>8,12</sup>      | 2,200 <sup>9</sup>     | 2,80011                 | NA             | NA             | NA               | NA             | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 1/14/05  | 260                      | 960                    | 1,300                   | NA             | NA             | NA               | NA             | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
| MW-102   | 3/29/01  | 320                      | 1,300                  | 1,600                   | < 0.50         | < 0.50         | 0.95             | < 0.50         | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 1/20/03  | 180 <sup>8</sup>         | 480 <sup>9</sup>       | 520 <sup>11</sup>       | < 0.50         | 0.55           | < 0.50           | < 0.50         | 7,600             | < 0.10              | <1.0    | < 0.20              | 0.41      | 7,300     | 8.79                 |
|          | 2/10/03  | 180 <sup>8</sup>         | 220 <sup>9</sup>       | 260 <sup>11</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 8,900             | < 0.10              | <1.0    | < 0.20              | 0.45      | <5,000    | 10.50                |
|          | 2/24/03  | 120 <sup>8</sup>         | 180 <sup>9</sup>       | 200 <sup>11</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 6,600             | < 0.10              | < 0.50  | < 0.20              | 0.34      | <5,000    | 10.10                |
|          | 3/10/03  | 130 <sup>8</sup>         | 510 <sup>9</sup>       | 490 <sup>11</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 6,100             | <0.10               | <1.0    | <0.20               | 0.38      | <5,000    | 8.30                 |
|          | 3/24/03  | 110 <sup>8</sup>         | 130 <sup>9</sup>       | 140 <sup>11</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 2,500             | < 0.10              | < 0.50  | < 0.20              | 0.17      | 5,100     | 8.64                 |
|          | 4/7/03   | 170 <sup>8</sup>         | 360 <sup>9</sup>       | 370 <sup>10</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 3,800             | <0.10               | <1.0    | <0.20               | 0.21      | <5,000    | 10.10                |
|          | 4/21/03  | 150 <sup>8</sup>         | 280 <sup>9</sup>       | 290 <sup>10</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 3,400             | < 0.10              | < 0.50  | < 0.20              | 0.19      | <5,000    | 9.04                 |
|          | 5/5/03   | 1208,12                  | 360 <sup>9</sup>       | 400 <sup>10</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 3,900             | < 0.10              | < 0.50  | < 0.20              | 0.38      | 5,000     | 9.13                 |
|          | 7/7/03   | 160 <sup>8</sup>         | 420 <sup>9</sup>       | 440 <sup>11</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 5,200             | < 0.10              | <0.10   | < 0.20              | 0.62      | <5,000    | 5.87                 |
|          | 10/06/03 | 75 <sup>8</sup>          | 410 <sup>9</sup>       | 470 <sup>11</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 8,700             | < 0.10              | < 0.10  | < 0.20              | 0.54      | 5,600     | 4.20                 |
|          | 1/5/04   | 6312                     | <b>66</b> <sup>9</sup> | <b>54</b> <sup>11</sup> | NA             | NA             | NA               | NA             | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 4/5/04   | 110 <sup>12</sup>        | 370 <sup>9</sup>       | 420 <sup>11</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 1,100             | < 0.10              | <0.10   | <0.20               | 0.63      | <5,000    | 4.40                 |
|          | 7/7/04   | 250 <sup>8</sup>         | 620 <sup>9</sup>       | 550 <sup>11</sup>       | < 0.50         | < 0.50         | < 0.50           | < 0.50         | 4,600             | < 0.10              | <0.10   | <0.20               | 0.47      | 5,200     | 2.10                 |
|          | 10/8/04  | 2008,12                  | 490 <sup>9</sup>       | 540 <sup>11</sup>       | NA             | NA             | NA               | NA             | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 1/14/05  | 140                      | 330                    | 380                     | NA             | NA             | NA               | NA             | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |

Table B-2 Historic Groundwater Analytical Results Pierson Building Center, Eureka, California

|                    |          |                       |                    |                     |                |                | Pierson i        | sunding C | enter, Eureka,    | Camornia                       |                   |                     |                     |                     |                                |
|--------------------|----------|-----------------------|--------------------|---------------------|----------------|----------------|------------------|-----------|-------------------|--------------------------------|-------------------|---------------------|---------------------|---------------------|--------------------------------|
| Sample<br>Location | Date     | TPHD <sup>1</sup>     | TPHPT <sup>3</sup> | TPHG <sup>4</sup>   | $\mathbf{B}^5$ | $\mathbf{T}^5$ | $\mathbf{E}^{5}$ | $X^5$     | Dissolved<br>Iron | Nitrate<br>(mg/L) <sup>6</sup> | Nitrite<br>(mg/L) | Ammonia<br>Nitrogen | Phosphate<br>(mg/L) | Potassium<br>(ug/L) | Total Organic Carbon<br>(mg/L) |
| Location           |          | (ug/L) <sup>2</sup>   | (ug/L)             | (ug/L)              | (ug/L)         | (ug/L)         | (ug/L)           | (ug/L)    | (ug/L)            | (mg/L)                         | (IIIg/L)          | (mg/L)              | (IIIg/L)            | (ug/L)              | (mg/L)                         |
| MW-103             | 3/29/01  | 910                   | 4,200              | 5,300               | < 0.50         | < 0.50         | 12               | 0.6       | NA                | NA                             | NA                | NA                  | NA                  | NA                  | NA                             |
|                    | 1/20/03  | 4408                  | 1,300 <sup>9</sup> | 1,300 <sup>11</sup> | < 0.50         | 0.53           | 2.3              | < 0.50    | 1,200             | 1.4                            | < 0.20            | < 0.20              | 0.34                | <5,000              | 3.82                           |
|                    | 2/10/03  | 590 <sup>8,12</sup>   | 1,700 <sup>9</sup> | 1,700 <sup>11</sup> | < 0.50         | < 0.50         | 3.2              | < 0.50    | 2,600             | 1.1                            | < 0.20            | < 0.20              | 0.23                | <5,000              | 3.31                           |
|                    | 2/24/03  | 530 <sup>8,12</sup>   | 1,000 <sup>9</sup> | 96011               | < 0.50         | < 0.50         | 3.3              | < 0.50    | 2,200             | 1.3                            | < 0.50            | 0.3                 | 0.4                 | <5,000              | 2.98                           |
|                    | 3/10/03  | 520 <sup>8</sup>      | 1,500 <sup>9</sup> | 1,400 <sup>11</sup> | < 0.50         | < 0.50         | 2.2              | < 0.50    | 4,200             | 0.82                           | < 0.50            | 0.23                | 0.27                | <5,000              | 4.29                           |
|                    | 3/24/03  | 140 <sup>8,12</sup>   | 1,100 <sup>9</sup> | 1,100 <sup>11</sup> | < 0.50         | < 0.50         | 2.3              | < 0.50    | 4,400             | 1.1                            | < 0.50            | < 0.20              | 0.12                | <5,000              | 3.37                           |
|                    | 4/7/03   | 450 <sup>8</sup>      | 1,100 <sup>9</sup> | 1,100 <sup>10</sup> | < 0.50         | < 0.50         | 2.7              | < 0.50    | 3,400             | 0.81                           | < 0.10            | <0.20               | 0.15                | <5,000              | 3.12                           |
|                    | 4/21/03  | 370 <sup>8</sup>      | 710 <sup>9</sup>   | 730 <sup>10</sup>   | < 0.50         | < 0.50         | 1.5              | < 0.50    | 2,100             | 0.94                           | < 0.30            | <0.20               | 0.08                | <5,000              | 3.42                           |
|                    | 5/5/03   | 3508,12               | 1,200 <sup>9</sup> | 1,300 <sup>10</sup> | < 0.50         | < 0.50         | 1.6              | < 0.50    | 2,400             | 0.77                           | < 0.20            | < 0.20              | 0.18                | <5,000              | 3.18                           |
|                    | 7/7/03   | 1,0008                | 4,4009             | 5,000 <sup>11</sup> | < 0.50         | 0.54           | 4.8              | < 0.50    | 13,000            | 0.25                           | < 0.10            | 0.48                | 0.26                | <5,000              | 5.69                           |
|                    | 10/06/03 | 760 <sup>8</sup>      | 4,0009             | 4,000 <sup>11</sup> | <1.0           | 1.1            | 11               | <1.0      | 31,000            | <0.10                          | < 0.20            | 0.87                | 0.92                | 5,900               | 11.10                          |
|                    | 1/5/04   | 560 <sup>8,12</sup>   | 1,700 <sup>9</sup> | 1,600 <sup>11</sup> | NA             | NA             | NA               | NA        | NA                | NA                             | NA                | NA                  | NA                  | NA                  | NA                             |
|                    | 4/5/04   | 390 <sup>8,12</sup>   | 1,400 <sup>9</sup> | 1,600 <sup>11</sup> | < 0.50         | < 0.50         | 3.5              | < 0.50    | 1,500             | 0.24                           | < 0.10            | <0.20               | 0.41                | <5,000              | 4.70                           |
|                    | 7/7/04   | 1,100 <sup>8</sup>    | 1,900 <sup>9</sup> | 2,20011             | < 0.50         | < 0.50         | 2.9              | < 0.50    | 13,000            | < 0.10                         | < 0.10            | 0.31                | 0.58                | <5,000              | 8.40                           |
|                    | 10/8/04  | 1,200 <sup>8,12</sup> | 4,3009             | 4,200 <sup>11</sup> | NA             | NA             | NA               | NA        | NA                | NA                             | NA                | NA                  | NA                  | NA                  | NA                             |
|                    | 1/14/05  | 410                   | 1,200              | 1,200               | NA             | NA             | NA               | NA        | NA                | NA                             | NA                | NA                  | NA                  | NA                  | NA                             |
| MW-104             | 3/29/01  | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | NA                | NA                             | NA                | NA                  | NA                  | NA                  | NA                             |
|                    | 1/20/03  | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | <100              | 6.7                            | < 0.5             | <0.20               | 0.27                | <5,000              | 6.56                           |
|                    | 2/10/03  | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | <100              | 6.2                            | < 0.20            | <0.20               | 0.19                | <5,000              | 6.44                           |
|                    | 2/24/03  | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | <100              | 3.8                            | < 0.50            | <0.20               | 0.23                | <5,000              | 6.60                           |
|                    | 3/10/03  | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | <100              | 5.2                            | < 0.20            | <0.20               | 0.2                 | <5,000              | 5.44                           |
|                    | 3/24/03  | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | <100              | 4.6                            | < 0.50            | <0.20               | 0.13                | <5,000              | 6.69                           |
|                    | 4/7/03   | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | <100              | 4.3                            | < 0.10            | <0.20               | 0.17                | <5,000              | 8.22                           |
|                    | 4/21/03  | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | <100              | 2.0                            | < 0.10            | <0.20               | 0.18                | <5,000              | 7.34                           |
|                    | 5/5/03   | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | <100              | 2.6                            | < 0.10            | <0.20               | 0.32                | <5,000              | 7.47                           |
|                    | 7/7/03   | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | 110               | 2.5                            | <0.10             | <020                | 0.40                | <5,000              | 3.14                           |
|                    | 10/06/03 | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | 340               | 0.98                           | < 0.10            | <0.20               | 0.13                | <5,000              | 4.21                           |
|                    | 1/5/04   | < 50                  | < 50               | < 50                | NA             | NA             | NA               | NA        | NA                | NA                             | NA                | NA                  | NA                  | NA                  | NA                             |
|                    | 7/7/04   | < 50                  | < 50               | < 50                | < 0.50         | < 0.50         | < 0.50           | < 0.50    | <100              | 0.54                           | <0.10             | < 0.20              | 0.13                | <5,000              | 2.70                           |
|                    | 10/8/04  | < 50                  | < 50               | < 50                | NA             | NA             | NA               | NA        | NA                | NA                             | NA                | NA                  | NA                  | NA                  | NA                             |
|                    | 1/14/05  | < 50                  | < 50               | < 50                | NA             | NA             | NA               | NA        | NA                | NA                             | NA                | NA                  | NA                  | NA                  | NA                             |

Table B-2 Historic Groundwater Analytical Results Pierson Building Center, Eureka, California

| Sample   | Date     | TPHD <sup>1</sup>       | TPHPT <sup>3</sup> | TPHG <sup>4</sup> | $\mathbf{B}^5$ | $\mathbf{T}^5$ | $\mathbf{E}^{5}$ | $\mathbf{X}^{5}$ | Dissolved<br>Iron | Nitrate             | Nitrite | Ammonia<br>Nitrogen | Phosphate | Potassium | Total Organic Carbon |
|----------|----------|-------------------------|--------------------|-------------------|----------------|----------------|------------------|------------------|-------------------|---------------------|---------|---------------------|-----------|-----------|----------------------|
| Location |          | (ug/L) <sup>2</sup>     | (ug/L)             | (ug/L)            | (ug/L)         | (ug/L)         | (ug/L)           | (ug/L)           | (ug/L)            | (mg/L) <sup>6</sup> | (mg/L)  | (mg/L)              | (mg/L)    | (ug/L)    | (mg/L)               |
| MW-105   | 3/29/01  | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 1/20/03  | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 4.0                 | < 0.10  | < 0.20              | 0.42      | <5,000    | 2.97                 |
|          | 2/10/03  | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 2.0                 | < 0.10  | < 0.20              | 0.25      | <5,000    | 2.87                 |
|          | 2/24/03  | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 3.2                 | < 0.10  | < 0.20              | 0.23      | <5,000    | 2.81                 |
|          | 3/10/03  | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 1.3                 | < 0.20  | <0.20               | 0.49      | <5,000    | 2.67                 |
|          | 3/24/03  | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 2.2                 | < 0.10  | <0.20               | 0.57      | <5,000    | 3.04                 |
|          | 4/7/03   | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 3.9                 | < 0.10  | <0.20               | 0.40      | <5,000    | 3.25                 |
|          | 4/21/03  | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 3.0                 | < 0.10  | < 0.20              | 0.34      | <5,000    | 3.24                 |
|          | 5/5/03   | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 6.2                 | < 0.10  | < 0.20              | 0.30      | <5,000    | 3.70                 |
|          | 7/7/03   | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 130               | 0.61                | < 0.10  | < 0.20              | <0.40     | <5,.000   | 3.14                 |
|          | 10/06/03 | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 0.23                | < 0.10  | < 0.20              | 0.18      | <5,000    | 2.79                 |
|          | 1/5/04   | < 50                    | < 50               | < 50              | NA             | NA             | NA               | NA               | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 4/5/04   | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 0.29                | < 0.10  | <0.20               | 0.12      | <5,000    | 1.90                 |
|          | 7/7/04   | < 50                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | <100              | 0.81                | < 0.10  | < 0.20              | 0.10      | <5,000    | 1.40                 |
|          | 10/8/04  | < 50                    | < 50               | < 50              | NA             | NA             | NA               | NA               | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 1/14/05  | < 50                    | < 50               | < 50              | NA             | NA             | NA               | NA               | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
| MW-106   | 1/20/03  | 120 <sup>12</sup>       | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 470               | 1.0                 | < 0.10  | 0.99                | 1.6       | 9,300     | 5.84                 |
|          | 2/10/03  | 9212                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 1,400             | 0.64                | < 0.20  | 1.0                 | 1.2       | 7,900     | 6.36                 |
|          | 2/24/03  | 9012                    | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 770               | 0.95                | < 0.50  | 1.4                 | 2.1       | 7,900     | 6.35                 |
|          | 3/10/03  | 73 <sup>8,12</sup>      | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 1,500             | 1.2                 | < 0.10  | 1.4                 | 1.9       | 7,600     | 6.01                 |
|          | 3/24/03  | 838,12                  | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 1,400             | 1.6                 | < 0.50  | 0.75                | 1.1       | 8,100     | 6.47                 |
|          | 4/7/03   | 110 <sup>13</sup>       | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 1,300             | 1.4                 | < 0.10  | 1.2                 | 1.2       | 7,900     | 7.20                 |
|          | 4/21/03  | 83 <sup>13</sup>        | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 1,300             | 1.5                 | < 0.10  | 0.64                | 0.77      | 7,400     | 6.35                 |
|          | 5/5/03   | 74 <sup>12</sup>        | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 1,300             | 1.9                 | < 0.10  | 0.73                | 0.95      | 7,600     | 6.55                 |
|          | 7/7/03   | 63                      | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 2,200             | 1.1                 | < 0.10  | 1.0                 | 1.3       | 8,300     | 5.37                 |
|          | 10/06/03 | 73 <sup>12</sup>        | < 50               | < 50              | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 4,700             | 0.28                | < 0.10  | 2.1                 | 2.2       | 8,700     | 6.34                 |
|          | 1/5/04   | < 50                    | < 50               | < 50              | NA             | NA             | NA               | NA               | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 4/5/04   | <b>56</b> <sup>12</sup> | 390 <sup>9</sup>   | 310 <sup>11</sup> | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 390               | 1.7                 | < 0.10  | 0.34                | 0.73      | 6,600     | 4.90                 |
|          | 7/7/04   | 79 <sup>12</sup>        | 140 <sup>9</sup>   | 240 <sup>11</sup> | < 0.50         | < 0.50         | < 0.50           | < 0.50           | 2,300             | 1.1                 | < 0.10  | 0.99                | 1.1       | 6,700     | 3.90                 |
|          | 10/8/04  | < 50                    | 56 <sup>9</sup>    | 9311              | NA             | NA             | NA               | NA               | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 1/14/05  | < 50                    | < 50               | < 50              | NA             | NA             | NA               | NA               | NA                | NA                  | NA      | NA                  | NA        | NA        | NA                   |

Table B-2 Historic Groundwater Analytical Results Pierson Building Center, Eureka, California

|          |          |                       |                     |                      |                  |                  |                  |                | Dissolved |                     |         |                     |           |           | ı                    |
|----------|----------|-----------------------|---------------------|----------------------|------------------|------------------|------------------|----------------|-----------|---------------------|---------|---------------------|-----------|-----------|----------------------|
| Sample   | Date     | TPHD <sup>1</sup>     | TPHPT <sup>3</sup>  | TPHG <sup>4</sup>    | $\mathbf{B}^{5}$ | $\mathbf{T}^{5}$ | $\mathbf{E}^{5}$ | $\mathbf{X}^5$ | Iron      | Nitrate             | Nitrite | Ammonia<br>Nitrogen | Phosphate | Potassium | Total Organic Carbon |
| Location | Date     | (ug/L) <sup>2</sup>   | (ug/L)              | (ug/L)               | (ug/L)           | (ug/L)           | (ug/L)           | (ug/L)         | (ug/L)    | (mg/L) <sup>6</sup> | (mg/L)  | (mg/L)              | (mg/L)    | (ug/L)    | (mg/L)               |
| MW-107   | 1/20/03  | 210 <sup>12</sup>     | 290 <sup>9</sup>    | 40011                | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 2,300     | 0.6                 | < 0.50  | 1.0                 | 1.5       | 9,200     | 4.93                 |
|          | 2/10/03  | 250 <sup>12</sup>     | 620 <sup>9</sup>    | 740 <sup>11</sup>    | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 3,200     | 0.45                | < 0.50  | 0.82                | 0.61      | 8,800     | 6.07                 |
|          | 2/24/03  | 23012                 | 480 <sup>9</sup>    | 550 <sup>11</sup>    | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 2,200     | 0.74                | < 0.50  | 0.88                | 1.3       | 8,300     | 5.30                 |
|          | 3/10/03  | 180 <sup>8</sup>      | 740 <sup>9</sup>    | 780 <sup>11</sup>    | < 0.50           | < 0.50           | 0.58             | < 0.50         | 2,700     | 0.44                | < 0.50  | 0.99                | 0.83      | 8,400     | 5.28                 |
|          | 3/24/03  | 240 <sup>8,12</sup>   | 660 <sup>9</sup>    | 680 <sup>11</sup>    | < 0.50           | < 0.50           | 0.7              | < 0.50         | 3,200     | 0.72                | < 0.50  | 0.86                | 0.66      | 8,600     | 5.33                 |
|          | 4/7/03   | 200 <sup>8</sup>      | 430 <sup>9</sup>    | 500 <sup>10</sup>    | < 0.50           | < 0.50           | 0.62             | < 0.50         | 2,300     | 0.76                | < 0.10  | 0.89                | 1.0       | 8,400     | 5.56                 |
|          | 4/21/03  | 250 <sup>8</sup>      | 660 <sup>9</sup>    | 740 <sup>10</sup>    | < 0.50           | < 0.50           | 0.87             | < 0.50         | 3,100     | 0.92                | < 0.30  | 0.92                | 0.69      | 8,300     | 5.48                 |
|          | 5/5/03   | 230 <sup>8</sup>      | 560 <sup>9</sup>    | 720 <sup>10</sup>    | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 2,900     | 1.5                 | < 0.20  | 0.79                | 0.63      | 8,400     | 5.24                 |
|          | 7/7/03   | 65 <sup>12</sup>      | < 50                | 120 <sup>11</sup>    | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 6,600     | 3.8                 | < 0.10  | 1.4                 | 0.49      | 11,000    | 6.59                 |
|          | 10/06/03 | 100 <sup>8</sup>      | 140 <sup>9</sup>    | 270 <sup>11</sup>    | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 5,500     | 0.76                | < 0.20  | 1.7                 | 1.5       | 11,000    | 7.29                 |
|          | 1/5/04   | < 50                  | 51 <sup>9</sup>     | < 50                 | NA               | NA               | NA               | NA             | NA        | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 4/5/04   | < 50                  | < 50                | < 50                 | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 810       | 0.51                | < 0.10  | 0.22                | 0.27      | 6,200     | 2.80                 |
|          | 7/7/04   | 110 <sup>8</sup>      | 150 <sup>9</sup>    | 170 <sup>11</sup>    | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 2,600     | 4.3                 | 0.12    | 0.58                | 0.96      | 8,700     | 2.90                 |
|          | 10/8/04  | 68 <sup>8</sup>       | 140                 | 220 <sup>11</sup>    | NA               | NA               | NA               | NA             | NA        | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 1/14/05  | < 50                  | < 50                | <50                  | NA               | NA               | NA               | NA             | NA        | NA                  | NA      | NA                  | NA        | NA        | NA                   |
| MW-2A    | 1/20/03  | 1,3008                | 13,000 <sup>9</sup> | 16,000 <sup>10</sup> | <10              | 120              | 750              | 2,230          | 12,000    | < 0.10              | < 0.50  | 1.4                 | 1.5       | 8,200     | 13.10                |
|          | 2/10/03  | 1,400 <sup>8,12</sup> | $9,900^{9}$         | 12,000 <sup>11</sup> | <10              | 170              | 830              | 2,320          | 15,000    | < 0.10              | <1.0    | 1.5                 | 1.2       | 8,800     | 4.54                 |
|          | 2/24/03  | 1,400 <sup>8,12</sup> | 13,000 <sup>9</sup> | 15,000 <sup>11</sup> | <10              | 150              | 840              | 2,320          | 13,000    | <0.10               | < 0.50  | 2.3                 | 0.9       | 8,100     | 11.20                |
|          | 3/10/03  | 1,2008                | 16,000 <sup>9</sup> | 17,000 <sup>10</sup> | <10              | 200              | 1,000            | 2,500          | 15,000    | <0.10               | <1.0    | 1.5                 | 1.4       | 8,300     | 10.20                |
|          | 3/24/03  | 1,200 <sup>8,12</sup> | 14,000 <sup>9</sup> | 14,000 <sup>10</sup> | <10              | 230              | 1,200            | 3,580          | 13,000    | < 0.10              | < 0.50  | 1.2                 | 1.2       | 7,900     | 11.20                |
|          | 4/7/03   | 1,600 <sup>8</sup>    | 16,000 <sup>9</sup> | 17,000 <sup>10</sup> | <10              | 170              | 990              | 2,870          | 13,000    | < 0.10              | < 0.50  | 0.68                | 0.89      | 8,000     | 10.60                |
|          | 4/21/03  | 1,3008                | 12,000 <sup>9</sup> | 15,000 <sup>10</sup> | <10              | <10              | 1,000            | 2,660          | 14,000    | < 0.10              | < 0.50  | 1.3                 | 1.1       | 7,300     | 13.30                |
|          | 5/5/03   | 1,300 <sup>8,12</sup> | 14,000 <sup>9</sup> | 17,000 <sup>10</sup> | < 5.0            | 160              | 770              | 2,010          | 12,000    | < 0.10              | < 0.50  | 0.82                | 0.64      | 7,500     | 10.10                |
|          | 7/7/03   | 1,2008,12             | 17,000 <sup>9</sup> | 22,000 <sup>10</sup> | <10              | 200              | 1,100            | 2,940          | 11,000    | < 0.10              | < 0.10  | 1.0                 | 1.7       | 7,400     | 8.57                 |
|          | 10/06/03 | 1,2008                | 13,000 <sup>9</sup> | 19,000 <sup>10</sup> | < 5.0            | 150              | 780              | 1,620          | 17,000    | < 0.10              | < 0.20  | 1.8                 | 1.5       | 8,600     | 8.46                 |
|          | 1/5/04   | 1,500 <sup>8,12</sup> | 19,000 <sup>9</sup> | 22,000 <sup>10</sup> | NA               | NA               | NA               | NA             | NA        | NA                  | NA      | NA                  | NA        | NA        | NA                   |
|          | 4/5/04   | 1,600 <sup>8,12</sup> | 35,000 <sup>9</sup> | 36,000 <sup>10</sup> | <15              | 120              | 1,600            | 4,860          | 2,800     | < 0.10              | <0.10   | 0.20                | 1.0       | <5,000    | 5.30                 |
| MW-3     | 1/20/03  | < 50                  | < 50                | < 50                 | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 340       | 6.4                 | < 0.20  | <0.20               | 0.12      | 8,200     | 4.16                 |
|          | 2/10/03  | < 50                  | < 50                | < 50                 | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 370       | 6.4                 | < 0.20  | 0.30                | 0.094     | 8,700     | 4.54                 |
|          | 2/24/03  | < 50                  | < 50                | < 50                 | < 0.50           | < 0.50           | < 0.50           | < 0.50         | 210       | 7.2                 | < 0.30  | 0.22                | 0.073     | 8,400     | 3.81                 |

Table B-2 Historic Groundwater Analytical Results Pierson Building Center, Eureka, California

| Sample<br>Location | Date     | TPHD <sup>1</sup> (ug/L) <sup>2</sup> | TPHPT <sup>3</sup> (ug/L) | TPHG <sup>4</sup> (ug/L) | B <sup>5</sup> (ug/L) | T <sup>5</sup> (ug/L) | E <sup>5</sup> (ug/L) | X <sup>5</sup> (ug/L) | Dissolved<br>Iron<br>(ug/L) | Nitrate<br>(mg/L) <sup>6</sup> | Nitrite<br>(mg/L) | Ammonia<br>Nitrogen<br>(mg/L) | Phosphate<br>(mg/L) | Potassium<br>(ug/L) | Total Organic Carbon<br>(mg/L) |
|--------------------|----------|---------------------------------------|---------------------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------------|--------------------------------|-------------------|-------------------------------|---------------------|---------------------|--------------------------------|
| MW-3               | 3/10/03  | <50                                   | < 50                      | < 50                     | < 0.50                | < 0.50                | < 0.50                | < 0.50                | 430                         | 6.7                            | <0.20             | 0.33                          | 0.11                | 7,900               | 3.72                           |
| (cont'd)           | 3/24/03  | < 50                                  | < 50                      | < 50                     | < 0.50                | < 0.50                | < 0.50                | < 0.50                | 220                         | 7.5                            | < 0.20            | 0.27                          | 0.029               | 8,200               | 3.75                           |
|                    | 4/7/03   | < 50                                  | < 50                      | < 50                     | < 0.50                | < 0.50                | < 0.50                | < 0.50                | 300                         | 6.3                            | < 0.10            | 0.38                          | 0.043               | 8,700               | 4.01                           |
|                    | 4/21/03  | < 50                                  | < 50                      | < 50                     | < 0.50                | < 0.50                | < 0.50                | < 0.50                | 170                         | 7.5                            | < 0.10            | 0.28                          | 0.044               | 8,500               | 3.83                           |
|                    | 5/5/03   | < 50                                  | < 50                      | < 50                     | < 0.50                | < 0.50                | < 0.50                | < 0.50                | 200                         | 6.6                            | < 0.10            | 0.23                          | 0.066               | 8,000               | 3.40                           |
|                    | 7/7/03   | < 50                                  | < 50                      | < 50                     | < 0.50                | < 0.50                | < 0.50                | < 0.50                | 220                         | 6.9                            | < 0.10            | 0.66                          | 0.12                | 10,000              | 3.94                           |
|                    | 10/06/03 | < 50                                  | < 50                      | < 50                     | < 0.50                | < 0.50                | < 0.50                | < 0.50                | 250                         | 6.2                            | <0.10             | 0.39                          | 0.13                | 11,000              | 4.50                           |
|                    | 1/5/04   | < 50                                  | < 50                      | < 50                     | NA                    | NA                    | NA                    | NA                    | NA                          | NA                             | NA                | NA                            | NA                  | NA                  | NA                             |
|                    | 4/5/04   | < 50                                  | < 50                      | < 50                     | < 0.50                | < 0.50                | < 0.50                | < 0.50                | <100                        | 0.75                           | < 0.10            | 0.29                          | 0.078               | 6,900               | 2.70                           |

- 1. Total Petroleum Hydrocarbons as Diesel (TPHD) analyzed in general accordance with EPA Method No. 3550.
- 2. ug/L: micrograms per liter
- 3. Total Petroleum Hydrocarbons as Paint Thinner (TPHPT) analyzed in general accordance with EPA Method No. 5030.
- 4. Total Petroleum Hydrocarbons as Gasoline (TPHG) analyzed in general accordance with EPA Method No. 5030.
- 5. Benzene (B), Toluene (T), Ethylbenzene (E), Xylenes (X), Volatile Organic Compounds (VOCs), analyzed in general accordance with EPA Method No. 8260B.
- 6. milligrams per liter (mg/L)
- 7. <: denotes a laboratory value "less than" the method detection limit
- 8. Contains some material lighter than diesel. However, some of this material extends into the diesel range of molecular weights.
- 9. Does not present a peak pattern consistent with that of paint thinner. The reported results represent the amount of material in the paint thinner range.
- 10. Appears to be similar to gasoline but certain peak ratios are not that of a fresh gasoline standard. The reported results represent the amount of material in the gasoline range.
- 11. Does not present a peak pattern consistent with that of gasoline. The reported results represent the amount of material in the gasoline range.
- 12. Contains material in the diesel range of molecular weights, but the material does not exhibit the peak pattern typical of diesel oil.
- 13. Contains material similar to degraded or weathered diesel oil.

### Analytical Results for Volatile Organics<sup>1</sup> in Groundwater Pierson Building Center, Eureka, California

 $(units = ug/L)^2$ 

| Sample<br>Location | Date     | $\mathrm{MTBE}^3$ | Chloroform        | Isopropyl-<br>benzene | Bromo-<br>benzene | n-Propyl-<br>benzene | 1,3,5-<br>Trimethyl-<br>benzene | 1,2,4-<br>Trimethyl-<br>benzene | sec-Butyl-<br>benzene | n-Butyl-<br>benzene | Naph-<br>thalene |
|--------------------|----------|-------------------|-------------------|-----------------------|-------------------|----------------------|---------------------------------|---------------------------------|-----------------------|---------------------|------------------|
| MW-101             | 01/20/03 | NA <sup>4</sup>   | <1.0 <sup>5</sup> | 12                    | 21                | <1.0                 | 7.0                             | 62                              | 2.1                   | <1.0                | 2.4              |
| 10100-101          | 01/20/03 | NA<br>NA          | <1.0<br><5.0      | 24                    | <5.0              | 51                   | 32                              | 170                             | 6.1                   | <5.0                | <20              |
|                    | 02/10/03 | NA<br>NA          | <5.0              | 18                    | < 5.0             | 40                   | 24                              | 130                             | 5.1                   | <5.0                | <20              |
|                    | 02/24/03 | NA<br>NA          | <2.0              | 28                    | <2.0              | 62                   | 64                              | 300                             | 7.7                   | 4.5                 | 46               |
|                    | 03/10/03 | NA NA             | <2.0              | 24                    | <2.0              | 56                   | 53                              | 250                             | <2.0                  | <2.0                | 45               |
|                    | 04/07/03 | NA NA             | <2.0              | 22                    | <2.0              | 50                   | 42                              | 190                             | 6.1                   | 21                  | 30               |
|                    | 04/21/03 | NA                | <1.0              | 18                    | <1.0              | 36                   | 31                              | 120                             | 4.7                   | 2.1                 | 33               |
|                    | 05/05/03 | NA                | <2.0              | 21                    | <2.0              | 37                   | 27                              | 130                             | 3.0                   | 4.0                 | 24               |
|                    | 07/07/03 | <2.0              | <4.0              | 48                    | <4.0              | 110                  | 110                             | 470                             | 15                    | 7.1                 | 65               |
|                    | 10/06/03 | < 0.50            | <1.0              | 34                    | <1.0              | 75                   | 26                              | 57                              | 15                    | 8.7                 | 35               |
|                    | 01/05/04 | NA                | NA                | NA                    | NA                | NA                   | NA                              | NA                              | NA                    | NA                  | NA               |
|                    | 04/05/04 | <1.0              | 2.9               | 30                    | <2.0              | 88                   | 160                             | 120                             | 13                    | 16                  | 51               |
|                    | 07/07/04 | <1.0              | <2.0              | 27                    | <2.0              | 110                  | 94                              | 240                             | 23                    | 21                  | 15               |
| MW-102             | 01/20/03 | NA                | 19                | 7.9                   | <1.0              | 22                   | 1.6                             | 1.0                             | 6.4                   | 3.2                 | <2.0             |
|                    | 02/10/03 | NA                | 14                | 2.1                   | <1.0              | 7.2                  | <1.0                            | <1.0                            | 2.5                   | <1.0                | <2.0             |
|                    | 02/24/03 | NA                | 12                | 7                     | <1.0              | 25                   | <1.0                            | <1.0                            | 11                    | 1.9                 | <2.0             |
|                    | 03/10/03 | NA                | 8.1               | 3.6                   | <1.0              | 15                   | <1.0                            | <1.0                            | 6.2                   | 1.5                 | <2.0             |
|                    | 03/24/03 | NA                | 11                | 4.2                   | <1.0              | 18                   | <1.0                            | <1.0                            | 7.3                   | 1.6                 | <2.0             |
|                    | 04/07/03 | NA                | 13                | 4.3                   | <1.0              | 17                   | <1.0                            | <1.0                            | 7.0                   | 2.4                 | <2.0             |
|                    | 04/21/03 | NA                | 12                | 3.1                   | <1.0              | 13                   | <1.0                            | <1.0                            | 5.4                   | <1.0                | <2.0             |
|                    | 05/05/03 | NA                | 17                | 5.4                   | <1.0              | 19                   | <1.0                            | <1.0                            | 7.7                   | 2.7                 | <2.0             |
|                    | 07/07/03 | < 0.50            | 1.6               | 3.8                   | <1.0              | 17                   | <1.0                            | <1.0                            | 8.9                   | 1.9                 | <2.0             |
|                    | 10/06/03 | < 0.50            | <1.0              | 5.8                   | <1.0              | 22                   | <1.0                            | <1.0                            | 14                    | 2.8                 | <2.0             |
|                    | 01/05/04 | NA                | NA                | NA                    | NA                | NA                   | NA                              | NA                              | NA                    | NA                  | NA               |
|                    | 04/05/04 | < 0.50            | <1.0              | 5.6                   | <1.0              | 14                   | 1.2                             | 1.4                             | 8.0                   | 2.2                 | <2.0             |
|                    | 07/07/04 | < 0.50            | <1.0              | 5.3                   | <1.0              | 19                   | <1.0                            | <1.0                            | 11                    | 3.3                 | 2.4              |
| MW-103             | 01/20/03 | NA                | <1.0              | 32                    | <1.0              | 70                   | <1.0                            | <1.0                            | 21                    | 11                  | 4.9              |
|                    | 02/10/03 | NA                | <1.0              | 36                    | <1.0              | 91                   | <1.0                            | <1.0                            | 21                    | 11                  | 6.3              |
|                    | 02/24/03 | NA                | <1.0              | 38                    | <1.0              | 89                   | <1.0                            | <1.0                            | 20                    | 8.4                 | 9.0              |
|                    | 03/10/03 | NA                | <1.0              | 23                    | <1.0              | 56                   | <1.0                            | <1.0                            | 12                    | 5.4                 | 8.7              |

### Analytical Results for Volatile Organics<sup>1</sup> in Groundwater Pierson Building Center, Eureka, California

 $(units = ug/L)^2$ 

| Sample<br>Location | Date     | MTBE <sup>3</sup> | Chloroform | Isopropyl-<br>benzene | Bromo-<br>benzene | n-Propyl-<br>benzene | 1,3,5-<br>Trimethyl-<br>benzene | 1,2,4-<br>Trimethyl-<br>benzene | sec-Butyl-<br>benzene | n-Butyl-<br>benzene | Naph-<br>thalene |
|--------------------|----------|-------------------|------------|-----------------------|-------------------|----------------------|---------------------------------|---------------------------------|-----------------------|---------------------|------------------|
| MW-103             | 03/24/03 | NA                | <1.0       | 24                    | <1.0              | 62                   | <1.0                            | <1.0                            | 13                    | 5.6                 | 8.9              |
| cont'd             | 04/07/03 | NA                | <1.0       | 30                    | <1.0              | 81                   | <1.0                            | <1.0                            | 17                    | 9.7                 | 5.2              |
|                    | 04/21/03 | NA                | <1.0       | 16                    | <1.0              | 46                   | <1.0                            | <1.0                            | 9.7                   | 3.3                 | 5.7              |
|                    | 05/05/03 | NA                | <1.0       | 29                    | <1.0              | 59                   | <1.0                            | <1.0                            | 12                    | 6.4                 | 4.3              |
|                    | 07/07/03 | < 0.50            | <1.0       | 58                    | <1.0              | 160                  | <1.0                            | <1.0                            | 30                    | 15                  | 28               |
|                    | 10/06/03 | <1.0              | <2.0       | 140                   | <2.0              | 310                  | <2.0                            | <2.0                            | 82                    | 47                  | 24               |
|                    | 01/05/04 | NA                | NA         | NA                    | NA                | NA                   | NA                              | NA                              | NA                    | NA                  | NA               |
|                    | 04/05/04 | < 0.50            | <1.0       | 33                    | <1.0              | 75                   | <1.0                            | <1.0                            | 19                    | 9.4                 | 13               |
|                    | 07/07/04 | < 0.50            | <1.0       | 56                    | <1.0              | <1.0                 | <1.0                            | <1.0                            | 30                    | 19                  | 16               |
| MW-104             | 01/20/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 02/10/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 02/24/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 03/10/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 03/24/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 04/07/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 04/21/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 05/05/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 07/07/03 | < 0.50            | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 10/06/03 | < 0.50            | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 01/05/04 | NA                | NA         | NA                    | NA                | NA                   | NA                              | NA                              | NA                    | NA                  | NA               |
|                    | 04/05/04 | < 0.50            | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 07/07/04 | < 0.50            | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
| MW-105             | 01/20/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 02/10/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 02/24/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 03/10/03 | NA                | 1.6        | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 03/24/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 04/07/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 04/21/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 05/05/03 | NA                | 1.0        | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |

### Analytical Results for Volatile Organics<sup>1</sup> in Groundwater Pierson Building Center, Eureka, California

 $(units = ug/L)^2$ 

| Sample<br>Location | Date     | MTBE <sup>3</sup> | Chloroform | Isopropyl-<br>benzene | Bromo-<br>benzene | n-Propyl-<br>benzene | 1,3,5-<br>Trimethyl-<br>benzene | 1,2,4-<br>Trimethyl-<br>benzene | sec-Butyl-<br>benzene | n-Butyl-<br>benzene | Naph-<br>thalene |
|--------------------|----------|-------------------|------------|-----------------------|-------------------|----------------------|---------------------------------|---------------------------------|-----------------------|---------------------|------------------|
| MW-105             | 07/07/03 | < 0.50            | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
| cont'd             | 10/06/03 | < 0.50            | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 01/05/04 | NA                | NA         | NA                    | NA                | NA                   | NA                              | NA                              | NA                    | NA                  | NA               |
|                    | 04/05/04 | < 0.50            | 1.0        | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <<1.0               | <2.0             |
|                    | 07/07/04 | < 0.50            | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
| MW-106             | 01/20/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 02/10/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 02/24/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 03/10/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 03/24/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 04/07/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 04/21/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 05/05/03 | NA                | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 07/07/03 | 1.7               | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 10/06/03 | 3.0               | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 01/05/04 | NA                | NA         | NA                    | NA                | NA                   | NA                              | NA                              | NA                    | NA                  | NA               |
|                    | 04/05/04 | < 0.50            | <1.0       | 19                    | <1.0              | 15                   | <1.0                            | <1.0                            | 14                    | <1.0                | <2.0             |
|                    | 07/07/04 | < 0.50            | <1.0       | 2.8                   | <1.0              | <1.0                 | <1.0                            | <1.0                            | 8.0                   | <1.0                | <2.0             |
| MW-107             | 01/20/03 | NA                | <1.0       | 14                    | <1.0              | 7.4                  | <1.0                            | <1.0                            | 5.6                   | 1.7                 | <2.0             |
|                    | 02/10/03 | NA                | <1.0       | 20                    | <1.0              | 20                   | <1.0                            | <1.0                            | <1.0                  | 3.1                 | <2.0             |
|                    | 02/24/03 | NA                | <1.0       | 21                    | <1.0              | 26                   | <1.0                            | <1.0                            | <1.0                  | 3.3                 | <2.0             |
|                    | 03/10/03 | NA                | <1.0       | 23                    | <1.0              | 39                   | <1.0                            | <1.0                            | 12                    | 4.2                 | <2.0             |
|                    | 03/24/03 | NA                | <1.0       | 27                    | <1.0              | 45                   | <1.0                            | <1.0                            | 14                    | 5.2                 | <2.0             |
|                    | 04/07/03 | NA                | <1.0       | 21                    | <1.0              | 34                   | <1.0                            | <1.0                            | 11                    | 4.3                 | <2.0             |
|                    | 04/21/03 | NA                | <1.0       | 34                    | <1.0              | 62                   | <1.0                            | <1.0                            | 17                    | 5.9                 | <2.0             |
|                    | 05/05/03 | NA                | <1.0       | 29                    | <1.0              | 46                   | <1.0                            | <1.0                            | 13                    | 5.6                 | <2.0             |
|                    | 07/07/03 | 1.2               | <1.0       | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | 1.1                   | <1.0                | <2.0             |
|                    | 10/06/03 | 1.4               | <1.0       | 6.9                   | <1.0              | 1.7                  | <1.0                            | <1.0                            | 5.9                   | <1.0                | <2.0             |
|                    | 01/05/04 | NA                | NA         | NA                    | NA                | NA                   | NA                              | NA                              | NA                    | NA                  | NA               |

### Analytical Results for Volatile Organics<sup>1</sup> in Groundwater Pierson Building Center, Eureka, California

 $(units = ug/L)^2$ 

| Sample<br>Location | Date     | MTBE <sup>3</sup> | Chloroform               | Isopropyl-<br>benzene | Bromo-<br>benzene | n-Propyl-<br>benzene | 1,3,5-<br>Trimethyl-<br>benzene | 1,2,4-<br>Trimethyl-<br>benzene | sec-Butyl-<br>benzene | n-Butyl-<br>benzene | Naph-<br>thalene |
|--------------------|----------|-------------------|--------------------------|-----------------------|-------------------|----------------------|---------------------------------|---------------------------------|-----------------------|---------------------|------------------|
| MW-107             | 04/05/04 | < 0.50            | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
| cont'd             | 07/07/04 | < 0.50            | <1.0                     | 13                    | <1.0              | 17                   | <1.0                            | <1.0                            | 6.1                   | 1.1                 | <2.0             |
| MW-2A              | 01/20/03 | NA                | < <b>20</b> <sup>3</sup> | 50                    | <20               | 140                  | 140                             | 700                             | <20                   | <20                 | 210              |
|                    | 02/10/03 | NA                | <20                      | 57                    | <20               | 150                  | 140                             | 730                             | <20                   | <20                 | 210              |
|                    | 02/24/03 | NA                | <20                      | 51                    | <20               | 150                  | 140                             | 830                             | <20                   | <20                 | 210              |
|                    | 03/10/03 | NA                | <20                      | 57                    | <20               | 170                  | 150                             | 880                             | <20                   | 27                  | 280              |
|                    | 03/24/03 | NA                | <20                      | 63                    | <20               | 220                  | 190                             | 1100                            | 20                    | 36                  | 350              |
|                    | 04/07/03 | NA                | <20                      | 60                    | <20               | 170                  | 140                             | 830                             | <20                   | 76                  | 230              |
|                    | 04/21/03 | NA                | <20                      | 46                    | <20               | 140                  | 120                             | 710                             | <20                   | <20                 | 250              |
|                    | 05/05/03 | NA                | <10                      | 63                    | <10               | 180                  | 120                             | 710                             | 15                    | 27                  | 210              |
|                    | 07/07/03 | <10               | <20                      | 88                    | <20               | 200                  | 160                             | 930                             | 27                    | <20                 | 340              |
|                    | 10/06/03 | < 5.0             | <10                      | 86                    | <10               | 250                  | 110                             | 690                             | 27                    | 31                  | 310              |
|                    | 01/05/04 | NA                | NA                       | NA                    | NA                | NA                   | NA                              | NA                              | NA                    | NA                  | NA               |
|                    | 04/05/04 | <15               | <30                      | 140                   | <30               | 390                  | 550                             | 2,100                           | 40                    | <30                 | 580              |
| MW-3               | 01/20/03 | NA                | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <20                 | <2.0             |
|                    | 02/10/03 | NA                | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 02/24/03 | NA                | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 03/10/03 | NA                | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 03/24/03 | NA                | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 04/07/03 | NA                | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 04/21/03 | NA                | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 05/05/03 | NA                | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 07/07/03 | 2.5               | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 10/06/03 | 6.4               | <1.0                     | <1.0                  | <1.0              | <1.0                 | <1.0                            | <1.0                            | <1.0                  | <1.0                | <2.0             |
|                    | 01/05/04 | NA                | NA                       | NA                    | NA                | NA                   | NA                              | NA                              | NA                    | NA                  | NA               |
|                    | 04/05/04 | 0.86              | <1.0                     | 4.5                   | <1.0              | <1.0                 | 14                              | 1.6                             | <1.0                  | <1.0                | <2.0             |

1. Volatile Organics by GC/MS EPA Method SW8260B

2. ug/L: micrograms per liter

3. MTBE: Methyl Tertiary-Butyl Ether

4. NA: Not Analyzed

5. <: denotes a laboratory value "less than" the method detection limit

Table B-4 Microbiological Plate Counts Pierson Building Center, Eureka, California

| Sample             | Sample        | Heterotrophic | Selective  | % Degraders |
|--------------------|---------------|---------------|------------|-------------|
| Location<br>MW-101 | Date 01/20/03 | (1.00x105)    | (1.00x105) | 14.63       |
| IVI VV - 1 U I     | -             | 5.7           | 0.6<br>1.9 |             |
|                    | 02/10/03      |               |            | 33.33       |
|                    | 02/24/03      | 5.4           | 2.3        | 42.59       |
|                    | 03/10/03      | 4.9           | 1.5        | 30.61       |
|                    | 03/24/03      | 5.1           | 1.8        | 35.29       |
|                    | 04/07/03      | 5.7           | 1.6        | 28.07       |
|                    | 04/21/03      | 6.5           | 2.1        | 32.31       |
|                    | 05/05/03      | 6.4           | 2.5        | 39.06       |
|                    | 07/07/03      | 7.2           | 2.1        | 29.17       |
|                    | 10/06/03      | 5.9           | 1.1        | 18.64       |
|                    | 01/05/04      | 5.2           | 0.8        | 15.38       |
|                    | 04/05/04      | 4.8           | 0.4        | 8.33        |
|                    | 07/07/04      | 5.2           | 0.6        | 11.54       |
| MW-102             | 01/20/03      | 4.8           | 0.9        | 18.78       |
|                    | 02/10/03      | 8.2           | 1.4        | 22.58       |
|                    | 02/24/03      | 6.5           | 1.2        | 18.46       |
|                    | 03/10/03      | 5.4           | 0.9        | 16.67       |
|                    | 03/24/03      | 5.7           | 1.4        | 24.56       |
|                    | 04/07/03      | 6.4           | 1.2        | 18.75       |
|                    | 04/21/03      | 6.2           | 1.6        | 25.81       |
|                    | 05/05/03      | 6.7           | 2.2        | 32.84       |
|                    | 07/07/03      | 5.6           | 1.8        | 32.14       |
|                    | 10/06/03      | 5.3           | 1.4        | 26.42       |
|                    | 01/05/04      | 5.5           | 0.9        | 16.36       |
|                    | 04/05/04      | 5.1           | 0.4        | 7.84        |
|                    | 07/07/04      | 7.2           | 1.1        | 15.28       |
|                    | 10/08/04      | 8.4           | 1.7        | 20.24       |
|                    | 01/14/05      | 9.1           | 2.1        | 23.08       |
| MW-103             | 01/20/03      | 5.2           | 0.5        | 9.62        |
|                    | 02/10/03      | 7.1           | 1.5        | 21.13       |
|                    | 02/24/03      | 6.5           | 2.1        | 32.31       |
|                    | 03/10/03      | 5.0           | 2.3        | 46.00       |
|                    | 03/24/03      | 5.3           | 1.8        | 33.96       |
|                    | 04/07/03      | 5.7           | 1.9        | 33.33       |
|                    | 04/21/03      | 6.4           | 2.2        | 34.38       |
|                    | 05/05/03      | 6.1           | 1.7        | 27.87       |
|                    | 07/07/03      | 5.8           | 0.9        | 15.52       |
|                    | 10/06/03      | 5.1           | 0.6        | 11.76       |
|                    | 01/05/04      | 4.7           | 0.4        | 8.51        |
|                    | 01/03/04      | 4.1           | 0.4        | 7.32        |
| <u> </u>           | 04/03/04      | 4.1           | 0.3        | 1.34        |

Table B-4 Microbiological Plate Counts Pierson Building Center, Eureka, California

| Sample<br>Location | Sample<br>Date | Heterotrophic (1.00x105) | Selective<br>(1.00x105) | % Degraders |
|--------------------|----------------|--------------------------|-------------------------|-------------|
| MW-103             | 07/07/04       | 6.6                      | 2.1                     | 31.82       |
| (cont'd)           | 10/08/04       | 6.2                      | 2.9                     | 46.77       |
|                    | 01/14/05       | 7.2                      | 3.5                     | 48.61       |
| MW-104             | 01/20/03       | 4.9                      | 0.7                     | 14.29       |
|                    | 02/10/03       | 5.1                      | 1.1                     | 21.57       |
|                    | 02/24/03       | 4.7                      | 1.4                     | 29.79       |
|                    | 03/10/03       | 5.5                      | 1.1                     | 20.00       |
|                    | 03/24/03       | 6.1                      | 0.8                     | 13.11       |
|                    | 04/07/03       | 5.8                      | 0.7                     | 12.07       |
|                    | 04/21/03       | 6.8                      | 1.0                     | 14.71       |
|                    | 05/05/03       | 6.5                      | 1.3                     | 20.00       |
|                    | 07/07/03       | 5.4                      | 0.9                     | 16.87       |
|                    | 10/06/03       | 4.9                      | 0.5                     | 10.20       |
|                    | 01/05/04       | 5.1                      | $ND^1$                  | 0           |
|                    | 04/05/04       | 5.3                      | ND                      | 0           |
|                    | 07/07/04       | 6.0                      | 1.1                     | 18.33       |
| MW-105             | 01/20/03       | 5.6                      | 1.2                     | 21.43       |
|                    | 02/10/03       | 5.3                      | 1.5                     | 28.30       |
|                    | 02/24/03       | 5.0                      | 1.1                     | 22.00       |
|                    | 03/10/03       | 6.1                      | 0.8                     | 13.11       |
|                    | 03/24/03       | 6.1                      | 0.6                     | 9.84        |
|                    | 04/07/03       | 6.4                      | 0.8                     | 12.50       |
|                    | 04/21/03       | 6.6                      | 1.2                     | 18.18       |
|                    | 05/05/03       | 6.3                      | 1.5                     | 23.81       |
|                    | 07/07/03       | 5.1                      | 0.8                     | 15.69       |
|                    | 10/06/03       | 5.3                      | 0.5                     | 9.43        |
|                    | 01/05/04       | 5.1                      | 0.7                     | 13.73       |
|                    | 04/05/04       | 4.9                      | 0.5                     | 10.20       |
|                    | 07/07/04       | 8.1                      | 3.4                     | 41.98       |
| MW-106             | 01/20/03       | 5.1                      | 0.2                     | 3.92        |
|                    | 02/10/03       | 8.1                      | 3.2                     | 39.51       |
|                    | 02/24/03       | 7.5                      | 2.4                     | 32.00       |
|                    | 03/10/03       | 6.3                      | 2.2                     | 34.92       |
|                    | 03/24/03       | 5.9                      | 1.9                     | 32.20       |
|                    | 04/07/03       | 5.6                      | 1.7                     | 30.36       |
|                    | 04/21/03       | 6.2                      | 2.1                     | 33.87       |
|                    | 05/05/03       | 6.3                      | 1.7                     | 26.98       |
|                    | 07/07/03       | 5.6                      | 1.1                     | 19.64       |
|                    | 10/06/03       | 5.7                      | 0.9                     | 15.79       |
|                    | 01/05/04       | 5.3                      | ND                      | 0           |

Table B-4 Microbiological Plate Counts Pierson Building Center, Eureka, California

| Sample<br>Location | Sample<br>Date    | Heterotrophic (1.00x105) | Selective<br>(1.00x105) | % Degraders    |
|--------------------|-------------------|--------------------------|-------------------------|----------------|
| MW-106             | 04/05/04          | 5.1                      | ND                      | 0              |
| (cont'd)           | 07/07/04          | 5.4                      | 0.4                     | 7.41           |
| MW-107             | 01/20/03          | 6.3                      | 0.3                     | 4.76           |
|                    | 02/10/03          | 5.8                      | 0.6                     | 10.34          |
|                    | 02/24/03          | 6.3                      | 0.8                     | 12.70          |
|                    | 03/10/03          | 5.8                      | 1.1                     | 18.97          |
|                    | 03/24/03          | 5.4                      | 1.5                     | 27.78          |
|                    | 04/07/03          | 5.5                      | 1.8                     | 32.73          |
|                    | 04/21/03          | 5.7                      | 1.4                     | 24.56          |
|                    | 05/05/03          | 5.9                      | 1.6                     | 27.12          |
|                    | 07/07/03          | 5.1                      | 1.4                     | 27.45          |
|                    | 10/06/03          | 5.3                      | 0.6                     | 11.32          |
|                    | 01/05/04          | 5.7                      | 0.1                     | 1.75           |
|                    | 04/05/04          | 5.2                      | ND                      | 0              |
|                    | 07/07/04          | 5.2                      | ND                      | 0              |
| MW-2A              | 01/20/03          | 5.3                      | 0.9                     | 16.98          |
| 1,11,1             | 02/10/03          | 7.2                      | 2.7                     | 37.50          |
|                    | 02/24/03          | 7.9                      | 2.1                     | 26.58          |
|                    | 03/10/03          | 6.2                      | 2.8                     | 45.16          |
|                    | 03/10/03          | 6.5                      | 3.1                     | 47.69          |
|                    | 04/07/03          | 6.0                      | 2.7                     | 45.00          |
|                    | 04/01/03          | 6.7                      | 3.4                     | 50.75          |
|                    | 05/05/03          | 7.1                      | 3.2                     | 45.07          |
|                    | 07/07/03          | 6.6                      | 2.9                     | 43.94          |
|                    | 10/06/03          | 6.0                      | 1.9                     | 31.67          |
|                    | 01/05/04          | 5.4                      | 1.9                     | 22.22          |
|                    | 01/03/04          | 6.1                      | 1.4                     | 22.95          |
| NAVA O             |                   |                          |                         |                |
| MW-3               | 01/20/03          | 5.4                      | 0.3                     | 5.56           |
|                    | 02/10/03          | 4.9                      | 1.5                     | 15.52<br>30.61 |
|                    | 02/24/03          | 5.6                      | 1.2                     | 20.69          |
|                    | 03/24/03          | 6.1                      | 0.8                     | 13.11          |
|                    | 04/07/03          | 6.6                      | 0.5                     | 7.58           |
|                    | 04/21/03          | 6.9                      | 0.6                     | 8.70           |
|                    | 05/05/03          | 6.7                      | 1.1                     | 16.42          |
|                    | 07/07/03          | 6.2                      | 1.2                     | 19.35          |
|                    | 10/06/03          | 5.6<br>5.8               | 0.8                     | 14.29          |
|                    | 01/05/04 04/05/04 | 5.8<br>5.4               | 0.5                     | 8.62<br>12.96  |
| 1. ND: No          |                   | J.T                      | 0.7                     | 16.50          |
| 1, 110, 110        | Dettettu          |                          |                         |                |

Table B-5
Historic Natural Attenuation Parameters
Pierson Building Center, Eureka, California

| Sample    | Date                 | $\mathrm{DCO_2}^1$ | DO <sup>1</sup> | ORP <sup>1</sup> | 1               |
|-----------|----------------------|--------------------|-----------------|------------------|-----------------|
| Location  | Measured             | (ppm) <sup>2</sup> | (ppm)           | $(mV)^3$         | pH <sup>1</sup> |
| MW-101    | 01/20/03             | 50                 | 1.60            | 212              | 6.40            |
|           | 02/10/03             | 40                 | 0.98            | 229              | 6.17            |
|           | 02/24/03             | 70                 | 1.70            | 275              | 6.25            |
|           | 03/10/03             | 35                 | 1.45            | 281              | 6.35            |
|           | 03/24/03             | 55                 | 1.33            | 245              | 6.24            |
|           | 04/07/03             | 80                 | 1.21            | 242              | 6.22            |
|           | 04/21/03             | 45                 | 2.17            | 151              | 6.17            |
|           | 05/05/03             | 100                | 0.94            | 257              | 6.17            |
|           | 07/07/03             | 70                 | 0.62            | 246              | 6.28            |
|           | 10/06/03             | 25                 | 1.89            | 249              | 6.59            |
|           | 01/05/04             | 30                 | 2.58            | 263              | 6.19            |
|           | 04/05/04<br>07/07/04 | 20<br>45           | 0.75<br>0.52    | 272<br>9         | 6.08<br>5.81    |
|           | 10/08/04             | 35                 | 0.52            | -37              | 6.62            |
|           | 01/14/05             | 25                 | 0.74            | 72               | 6.31            |
| MW-102    | 01/14/03             | 65                 | 1.04            | 245              | 5.85            |
| 10100     | 02/10/03             | 70                 | 0.59            | 243              | 5.97            |
|           | 02/24/03             | 65                 | 0.49            | 240              | 6.11            |
|           | 03/10/03             | 70                 | 0.79            | 252              | 6.14            |
|           | 03/24/03             | 60                 | 0.90            | 268              | 5.97            |
|           | 04/07/03             | 80                 | 0.88            | 252              | 5.90            |
|           | 04/21/03             | 60                 | 0.69            | 190              | 5.86            |
|           | 05/05/03             | 65                 | 0.77            | 256              | 5.87            |
|           | 07/07/03             | 70                 | 0.60            | 247              | 6.17            |
|           | 10/06/03             | 45                 | 0.46            | 249              | 6.20            |
|           | 01/05/04             | $NM^4$             | 3.21            | 281              | 5.78            |
|           | 04/05/04             | 50                 | 1.20            | 289              | 5.84            |
|           | 07/07/04             | 50                 | 0.52            | 0                | 6.61            |
|           | 10/08/04             | 50                 | 0.72            | -14              | 6.41            |
| 7.777.400 | 01/14/05             | 40                 | 1.08            | 91               | 6.05            |
| MW-103    | 01/20/03             | 40                 | 1.88            | 230              | 5.93            |
|           | 02/10/03             | 40                 | 0.70            | 234              | 5.85            |
|           | 02/24/03 03/10/03    | 55<br>50           | 0.87            | 239<br>266       | 6.11<br>6.11    |
|           | 03/10/03             | 45                 | 1.06<br>1.66    | 258              | 6.06            |
|           | 03/24/03             | 50                 | 1.00            | 258              | 5.93            |
|           | 04/07/03             | 40                 | 1.39            | 82               | 5.72            |
|           | 05/05/03             | 50                 | 2.22            | 256              | 5.86            |
|           | 07/07/03             | 80                 | 0.47            | 243              | 5.97            |
|           | 10/06/03             | 170                | 0.57            | 251              | 6.06            |
|           | 01/05/04             | 40                 | 2.50            | 275              | 5.72            |
|           | 04/05/04             | 95                 | 1.26            | 289              | 6.03            |
|           | 07/07/04             | NM                 | 0.85            | 9                | 6.28            |
|           | 10/08/04             | 65                 | 0.70            | -5               | 6.29            |
|           | 01/14/05             | 50                 | 0.98            | 103              | 6.13            |

Table B-5
Historic Natural Attenuation Parameters
Pierson Building Center, Eureka, California

| Sample   | Date     | $DCO_2^{-1}$       | DO <sup>1</sup> | ORP <sup>1</sup> |                 |
|----------|----------|--------------------|-----------------|------------------|-----------------|
| Location | Measured | (ppm) <sup>2</sup> | (ppm)           | $(mV)^3$         | pH <sup>1</sup> |
| MW-104   | 01/20/03 | 90                 | 1.99            | 188              | 6.14            |
|          | 02/10/03 | 25                 | 3.49            | 231              | 5.87            |
|          | 02/24/03 | 50                 | 2.21            | 199              | 6.22            |
|          | 03/10/03 | 40                 | 2.37            | 252              | 6.27            |
|          | 03/24/03 | 40                 | 2.23            | 249              | 6.21            |
|          | 04/07/03 | 60                 | 3.24            | 238              | 6.08            |
|          | 04/21/03 | 30                 | 1.70            | 246              | 6.03            |
|          | 05/05/03 | 55                 | 1.25            | 247              | 6.07            |
|          | 07/07/03 | 40                 | 1.60            | 229              | 6.23            |
|          | 10/06/03 | 40                 | 1.56            | 248              | 5.79            |
|          | 01/05/04 | 30                 | 3.00            | 275              | 5.76            |
|          | 04/05/04 | 20                 | 0.89            | 271              | 5.91            |
|          | 07/07/04 | 40                 | 1.99            | 101              | 6.34            |
|          | 10/08/04 | 60                 | 1.56            | 78               | 6.10            |
|          | 01/14/05 | 45                 | 1.73            | 74               | 6.11            |
| MW-105   | 01/20/03 | 20                 | 4.96            | 230              | 6.50            |
|          | 02/10/03 | 15                 | 2.87            | 239              | 6.54            |
|          | 02/24/03 | 25                 | 4.30            | 258              | 6.33            |
|          | 03/10/03 | 40                 | 2.03            | 252              | 6.29            |
|          | 03/24/03 | 25                 | 3.25            | 253              | 6.26            |
|          | 04/07/03 | 35                 | 4.27            | 241              | 6.22            |
|          | 04/21/03 | 20                 | 2.94            | 193              | 6.14            |
|          | 05/05/03 | 45                 | 4.04            | 244              | 6.19            |
|          | 07/07/03 | 70                 | 1.77            | 241              | 5.89            |
|          | 10/06/03 | 45                 | 2.44            | 252              | 6.06            |
|          | 01/05/04 | 25                 | 3.38            | 268              | 6.18            |
|          | 04/05/04 | 20                 | 1.48            | 281              | 6.09            |
|          | 07/07/04 | 45                 | 1.43            | 100              | 5.14            |
|          | 10/08/04 | 30                 | 1.28            | 72               | 6.44            |
|          | 01/14/05 | 15                 | 5.02            | 65               | 6.34            |
| MW-106   | 01/20/03 | 70                 | 0.87            | 218              | 6.53            |
|          | 02/10/03 | 70                 | 1.96            | 232              | 6.48            |
|          | 02/24/03 | 90                 | 1.16            | 181              | 6.48            |
|          | 03/10/03 | 85                 | 1.03            | 227              | 6.54            |
|          | 03/24/03 | 65                 | 0.81            | 234              | 6.36            |
|          | 04/07/03 | 100                | 1.00            | 239              | 6.31            |
|          | 04/21/03 | 50                 | 0.80            | 221              | 6.33            |
|          | 05/05/03 | 95                 | 1.44            | 199              | 6.36            |
|          | 07/07/03 | 100                | 0.55            | 210              | 6.26            |
|          | 10/06/03 | 90                 | 0.58            | 268              | 6.46            |
|          | 01/05/04 | 125                | 2.63            | 266              | 6.00            |
|          | 04/05/04 | 50                 | 3.08            | 274              | 6.02            |
|          | 07/07/04 | 100                | 0.66            | 126              | 5.41            |
|          | 10/08/04 | 80                 | 1.09            | 101              | 6.49            |
|          | 01/14/05 | 40                 | 1.65            | 114              | 6.49            |

Table B-5
Historic Natural Attenuation Parameters
Pierson Building Center, Eureka, California

| Sample   | Date     | $DCO_2^{-1}$ | DO <sup>1</sup> | ORP <sup>1</sup> |                 |
|----------|----------|--------------|-----------------|------------------|-----------------|
| Location | Measured | $(ppm)^2$    | (ppm)           | $(mV)^3$         | pH <sup>1</sup> |
| MW-107   | 01/20/03 | 70           | 0.95            | 256              | 6.41            |
|          | 02/10/03 | 85           | 1.08            | 237              | 6.38            |
|          | 02/24/03 | 100          | 0.49            | 251              | 6.46            |
|          | 03/10/03 | 90           | 0.52            | 248              | 6.40            |
|          | 03/24/03 | 80           | 0.41            | 244              | 6.32            |
|          | 04/07/03 | 120          | 0.37            | 242              | 6.28            |
|          | 04/21/03 | 65           | 0.33            | 245              | 6.34            |
|          | 05/05/03 | 160          | 0.37            | 239              | 6.26            |
|          | 07/07/03 | 130          | 0.49            | 224              | 6.05            |
|          | 10/06/03 | 115          | 0.58            | 251              | 6.28            |
|          | 01/05/04 | 70           | 0.69            | 270              | 6.03            |
|          | 04/05/04 | 30           | 0.56            | 283              | 5.90            |
|          | 07/07/04 | 135          | 0.56            | 100              | 5.27            |
|          | 10/08/04 | 100          | 0.91            | 81               | 6.43            |
|          | 01/14/05 | 40           | 0.99            | 111              | 6.21            |
| MW-2A    | 01/20/03 | 75           | 0.28            | 238              | 6.42            |
|          | 02/10/03 | 90           | 0.32            | 235              | 6.32            |
|          | 02/24/03 | 130          | 0.37            | 288              | 6.24            |
|          | 03/10/03 | 100          | 0.40            | 244              | 6.31            |
|          | 03/24/03 | 80           | 0.33            | 246              | 6.29            |
|          | 04/07/03 | 75           | 0.32            | 257              | 6.14            |
|          | 04/21/03 | 75           | 0.23            | 222              | 6.20            |
|          | 05/05/03 | 140          | 0.28            | 235              | 6.22            |
|          | 07/07/03 | 95           | 0.33            | 249              | 6.24            |
|          | 10/06/03 | 95           | 0.39            | 249              | 6.35            |
|          | 01/05/04 | 75           | 0.69            | 275              | 6.19            |
|          | 04/05/04 | 40           | 0.56            | 274              | 6.07            |
| MW-3     | 01/20/03 | 60           | 2.62            | 238              | 6.64            |
|          | 02/10/03 | 35           | 3.38            | 233              | 6.57            |
|          | 02/24/03 | 45           | 3.81            | 239              | 6.67            |
|          | 03/10/03 | 50           | 2.89            | 235              | 6.68            |
|          | 03/24/03 | 35           | 3.40            | 239              | 6.60            |
|          | 04/07/03 | 80           | 2.84            | 250              | 6.47            |
|          | 04/21/03 | 40           | 3.41            | 215              | 6.53            |
|          | 05/05/03 | 45           | 3.34            | 244              | 6.41            |
|          | 07/07/03 | 60           | 1.79            | 244              | 8.87            |
|          | 10/06/03 | 40           | 0.65            | 242              | 6.48            |
|          | 01/05/04 | 40           | 4.02            | 273              | 6.30            |
|          | 04/05/04 | 30           | 2.80            | 270              | 6.45            |

<sup>1.</sup>  $DCO_2$  (Dissolved Carbon Dioxide), DO (Dissolved Oxygen), ORP (Oxidation-Reduction Potential), and pH measured with portable equipment.

<sup>2.</sup> ppm: parts per million

<sup>3.</sup> mV: millivolts

<sup>4.</sup> NM: not measured



### **BioJet**

### Innovative Remediation Technologies

| SHN Consulting Engineers             | Project Name               | Pierson Building Center                  | Sampled           | 1/14/05 |
|--------------------------------------|----------------------------|------------------------------------------|-------------------|---------|
| Attn: Roland Rueber                  | Client Project ID          |                                          | Received          | 1/18/05 |
| 812 W Wabash                         | Sampled By:                | David Paine                              | Plated            | 1/19/05 |
| Eureka, Ca 95501                     | Analysis Run               | Microbial Analysis                       | Analyzed (Physio) |         |
| Phone 707-441-8855 Fax: 707-441-8877 | Laboratory Indentification |                                          | Enumerated        | 1/24/05 |
| P.O.#                                |                            | 100 ppm (Paint Thinner, Gas, Diesel Mix) | Reported          | 2/8/05  |
| Site Location:                       | BioJet Project Manager     | Ken Farrar 209-245-6044 Fx. 209-245-3765 |                   |         |

Listed below are the results of microbial analyses, performed on Two (2) water samples collected January 14, 2005 from the Pierson Building Center site and received by the laboratory on January 18, 2005.

Samples were analyzed for General (haterotrophic, nonspecific) and selective (Paint Thinner, Gasoline, Diesel mix specific) enumerations were performed, respectively, on Plate Count Agar (nutritionally complex) and 50% Bushnell-Haas minimal salts media supplemented with Paint Thinner, Gasoline, Diesel mix (100 ppm) as the sole carbon source Using standard microbiological plate count techniques, serial dilutions of each water sample were inoculated onto each plate and incubated, perobically, for six (6) days at 30 degrees Celsius prior to evaluation.

|             |                    |          |          | Laboratory Results * |
|-------------|--------------------|----------|----------|----------------------|
|             |                    | GEN      | SEL      | DEG                  |
| Sample ID # | Sample Description | 1 00E+05 | 1.00E+05 | 54                   |
| 1           | MW-102             | 9.1      | 2.1      | 23.08%               |
| 2           | MW-103             | 7.2      | 3.5      | 48.61%               |

| Nune                                                                              |                                                                                 |    |                                                   |                                                                                                  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----|---------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Kon Farrar, Project Manager                                                       |                                                                                 |    |                                                   |                                                                                                  |
| MC - Moutane Content (%)                                                          | NON - Narse-Narogen (pom)                                                       | PO | Onto Phasphare (pom)                              |                                                                                                  |
| girt at log Hydrogen kie Concentration                                            | NO. = Nove (point)                                                              |    | ge Pytassum(ppm)                                  | GEN + Historiosportic Organisms (CFU + 10")                                                      |
| NO <sub>v</sub> N = Nitrate Nitrogen (pom)<br>NO <sub>v</sub> = Nitrate kin (ppm) | NH <sub>2</sub> N + Ammona Ntogen (pom)<br>NH <sub>4</sub> = Ammonium (on (ppm) |    | Detection Limits for<br>morganics • 0.61 -0.1 cpm | SEL . Selective Degrader Organisms (CFU x 10"<br>5, . Porcessage et Selective Degrades Organisms |



January 24, 2005

Pierson Building Center

4100 Broadway Eureka, CA 95501

Attn: Morgan Randall

RE: 091148.100 Pierson's Building Center

Order No.: 0501332 Invoice No.: 47696

PO No.:

ELAP No. 1247-Expires July 2006

### SAMPLE IDENTIFICATION

| Fraction | Client Sample Description |
|----------|---------------------------|
| DIA      | MW-106                    |
| 01 D     | MW-106                    |
| 01 G     | MW-106                    |
| 02A      | MW-107                    |
| 02D      | MW-107                    |
| 02G      | MW-107                    |
| 03A      | MW-104                    |
| 03D      | MW-104                    |
| 03G      | MW-104                    |
| 04A      | MW-105                    |
| 04D      | MW-105                    |
| 04G      | MW-105                    |
| 05A      | MW-102                    |
| 05D      | MW-102                    |
| 05G      | MW-102                    |
| 06A      | MW-103                    |
| 06D      | MW-103                    |
| 06G      | MW-103                    |
| 07A      | MW-101                    |
| 07D      | MW-101                    |
| 07G      | MW-101                    |

ND = Not Detected at the Reporting Limit

Limit = Reporting Limit

All solid results are expressed on a wetweight basis unless otherwise noted.

REPORT CERTIFIED BY

Laboratory Supervisor(s)

QA Unit

Jesse G. Chaney, Jr. Laboratory.Director

### North Coast Laboratories, Ltd.

CLIENT: Pierson Building Center

Project: 091148.100 Pierson's Building Center

Lab Order: 0501332

### CASE NARRATIVE

Date: 24-Jan-05

### TPH as Diesel:

Samples MW-101, MW-102 and MW-103 contain some material lighter than diesel. However, some of this material extends into the diesel range of molecular weights. These samples also contain material in the diesel range of molecular weights, but the material does not exhibit the peak pattern typical of diesel oil.

The surrogate recoveries were above the upper acceptance limit for sample MW-102 and the laboratory control sample/laboratory control sample duplicate (LCS/LCSD). The LCS/LCSD recoveries for diesel were within the acceptance limits; therefore, the data were accepted.

The relative percent difference (RPD) for the laboratory control samples was above the upper acceptance limit for diesel. The RPD was above the upper acceptance limit due to a laboratory error while fortifying the LCS/LCSD. The LCS/LCSD recoveries for diesel were within the acceptance limits; therefore, the data were accepted.

### TPH as Gasoline:

Samples MW-101, MW-102 and MW-103 do not present a peak pattern consistent with that of gasoline. The reported results represent the amount of material in the gasoline range.

### TPH as Paint Thinner:

Samples MW-101, MW-102 and MW-103 do not present a peak pattern consistent with that of paint thinner. The reported results represent the amount of material in the paint thinner range.

24-Jan-05

WorkOrder:

0501332

ANALYTICAL REPORT

Client Sample ID: MW-106

Lab ID: 0501332-01A

Received: 1/14/05

Collected: 1/14/05 11:00

Test Name: TPH as Gasoline

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter

Result

Limit

Units

DF

Extracted

Analyzed

TPHC Gas (C6-C14)

ND

50

µg/L

1.0

1/21/05

Client Sample ID: MW-106

Lab ID: 0501332-01D

Received: 1/14/05

Collected: 1/14/05 11:00

Test Name: TPH as Paint Thinner

Reference: EPA 5030/GCFID(LUFT)

Parameter

TPH-Paint thinner

Result ND Limit 50 Units μg/L

DF 1.0

Analyzed Extracted

1/21/05

Client Sample ID: MW-106

Lab ID: 0501332-01G

Received: 1/14/05

Collected: 1/14/05 11:00

Test Name: TPH as Diesel

TPHC Diesel (C12-C22)

Parameter

Result ND

Limit 50 27.6-107 Units µg/L % Rec DF 1.0 1.0

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Extracted 1/20/05 1/20/05

Analyzed 1/20/05 1/20/05

Client Sample ID: MW-107

Surrogate: N-Tricosane

Lab ID: 0501332-02A

TPHC Gas (C6-C14)

Received: 1/14/05

Collected: 1/14/05 11:35

Test Name: TPH as Gasoline

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter

Result ND

104

Limit 50 Units µg/L

DF 1.0

Extracted

Analyzed 1/21/05

Client Sample ID: MW-107

Lab ID: 0501332-02D

Received: 1/14/05

Collected: 1/14/05 11:35

Test Name: TPH as Paint Thinner

Reference: EPA 5030/GCFID(LUFT)

Parameter

Result

Limit

50

Units

DF 1.0

Extracted

Analyzed

TPH-Paint thinner

ND

µg/L

1/21/05

24-Jan-05

WorkOrder:

0501332

ANALYTICAL REPORT

Received: 1/14/05

Collected: 1/14/05 11:35

Lab ID: 0501332-02G

Client Sample ID: MW-107

Test Name: TPH as Diesel

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter TPHC Diesel (C12-C22)

Surrogate: N-Tricosane

Result ND 95.9

Limit 50 27.6-107

µg/L % Rec

Units

1.0 1/20/05 1.0 1/20/05

Extracted

1/20/05 1/20/05

Analyzed

Client Sample ID: MW-104

Received: 1/14/05

Collected: 1/14/05 12:15

Lab ID: 0501332-03A

Test Name: TPH as Gasoline

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Analyzed

Parameter TPHC Gas (C6-C14)

Limit 50 Units µg/L

DF 1.0

 $\mathbf{DF}$ 

Extracted

1/20/05

Client Sample ID: MW-104

Lab ID: 0501332-03D

Received: 1/14/05

Collected: 1/14/05 12:15

Test Name: TPH as Paint Thinner

Reference: EPA 5030/GCFID(LUFT)

Parameter TPH-Paint thinner Result ND

Result

ND

Limit 50 Units µg/L

Received: 1/14/05

DF 1.0

Extracted Analyzed 1/20/05

Collected: 1/14/05 12:15

Client Sample ID: MW-104

Lab ID: 0501332-03G

Test Name: TPH as Diesel

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter

TPHC Diesel (C12-C22)

Surrogate: N-Tricosane

Result ND 103

Limit 50 27.6-107 Units µg/L % Rec DF 1.0 1.0

Extracted 1/20/05 1/20/05

Analyzed 1/20/05 1/20/05

Client Sample ID: MW-105

Lab ID: 0501332-04A

Received: 1/14/05

Collected: 1/14/05 13:00

Test Name: TPH as Gasoline

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter

Result

Limit

Units

DF

Extracted

Analyzed

TPHC Gas (C6-C14)

ND

50

µg/L

1.0

1/20/05

24-Jan-05

WorkOrder:

0501332

ANALYTICAL REPORT

Client Sample ID: MW-105

Received: 1/14/05

Collected: 1/14/05 13:00

Lab ID: 0501332-04D

Test Name: TPH as Paint Thinner

Reference: EPA 5030/GCFID(LUFT)

Parameter

TPH-Paint thinner

Result ND

ND

98.6

Limit

50

Units µg/L

DF 1.0

Analyzed Extracted

1/20/05

Client Sample ID: MW-105

Received: 1/14/05

Collected: 1/14/05 13:00

Lab ID: 0501332-04G

Test Name: TPH as Diesel

Surrogate: N-Tricosane

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter

Result TPHC Diesel (C12-C22)

Limit 50

27.6-107

Units µg/L % Rec DF 1.0 1.0

Extracted 1/20/05 1/20/05

Analyzed 1/20/05 1/20/05

Client Sample ID: MW-102

Received: 1/14/05

Collected: 1/14/05 13:45

Lab ID: 0501332-05A

Test Name: TPH as Gasoline

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter

TPHC Gas (C6-C14)

Limit

50

Units µg/L

DF 1.0

Extracted Analyzed

1/21/05

Client Sample ID: MW-102

Received: 1/14/05

Result

330

380

Result

Collected: 1/14/05 13:45

Lab ID: 0501332-05D

Test Name: TPH as Paint Thinner

Reference: EPA 5030/GCFID(LUFT)

Parameter

TPH-Paint thinner

Limit

50

Units µg/L

DF 1.0

Extracted

Analyzed 1/21/05

Client Sample ID: MW-102

Received: 1/14/05

Collected: 1/14/05 13:45

Lab ID: 0501332-05G

Test Name: TPH as Diesel

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter

Limit

DF Units µg/L 1.0

1/20/05

Analyzed 1/20/05

TPHC Diesel (C12-C22)

Surrogate: N-Tricosane

140 115

Result

27.6-107

% Rec

1.0

1/20/05

Extracted

1/20/05

24-Jan-05

WorkOrder:

0501332

ANALYTICAL REPORT

Client Sample ID: MW-103

Received: 1/14/05

Collected: 1/14/05 14:25

Lab ID: 0501332-06A

Test Name: TPH as Gasoline

500

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter

TPHC Gas (C6-C14)

Limit Result

1,200

Units µg/L

DF

10

Extracted Analyzed

1/21/05

Client Sample ID: MW-103

Received: 1/14/05

Collected: 1/14/05 14:25

Lab ID: 0501332-06D

Test Name: TPH as Paint Thinner

Reference: EPA 5030/GCFID(LUFT)

Parameter TPH-Paint thinner Result 1.200

Result

410

105

Limit 500 Units րց/Լ

Received: 1/14/05

DF 10

Extracted Analyzed

1/21/05

Client Sample ID: MW-103

Lab ID: 0501332-06G

Collected: 1/14/05 14:25

Test Name: TPH as Diesel

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter

TPHC Diesel (C12-C22) Surrogate: N-Tricosane

Limit 50 27.6-107 Units µg/L % Rec DF 1.0 1.0

Extracted Analyzed 1/20/05

1/20/05

1/20/05 1/20/05

Client Sample ID: MW-101

Lab ID: 0501332-07A

Received: 1/14/05

Collected: 1/14/05 14:35

Test Name: TPH as Gasoline

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter

TPHC Gas (C6-C14)

Result 1,300

Limit 500 Units µg/L

DF 10

Extracted Analyzed 1/21/05

Client Sample ID: MW-101

Lab ID: 0501332-07D

Received: 1/14/05

Collected: 1/14/05 14:35

Reference: EPA 5030/GCFID(LUFT)

Parameter

Test Name: TPH as Paint Thinner

Limit Result

Units

DF

Extracted

Analyzed

TPH-Paint thinner

960

500

µg/L

10

1/21/05

24-Jan-05

WorkOrder: 0501332

ANALYTICAL REPORT

Received: 1/14/05

Collected: 1/14/05 14:35

Lab ID: 0501332-07G

Test Name: TPH as Diesel

Client Sample ID: MW-101

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

| Parameter              | Result | Limit    | <u>Units</u> | $\mathbf{DF}$ | Extracted | Analyzed |
|------------------------|--------|----------|--------------|---------------|-----------|----------|
| TPHC Diesel (C12-C22)  | 260    | 50       | µg/L         | 1.0           | 1/20/05   | 1/20/05  |
| Surrogate: N-Tricosane | 97.0   | 27.6-107 | % Rec        | 1.0           | 1/20/05   | 1/20/05  |

# North Coast Laboratories, Ltd.

CLIENT: Pierson Building Center

Work Order: 0501332

Project:

091148.100 Pierson's Building Center

QC SUMMARY REPORT

Date: 24-Jan-05

Method Blank

| Sample ID: MB-1/20/05 | Batch ID: R32958 | Test Code: | TPHCGW        | Units: µg/L           |       | Analysis | Date: 1/20/   | Analysis Date: 1/20/05 10:35:42 PM   | Prep Date: | le;                |      |
|-----------------------|------------------|------------|---------------|-----------------------|-------|----------|---------------|--------------------------------------|------------|--------------------|------|
| Client ID:            |                  | Run ID:    | ORGC8_050120A | 20A                   |       | SeqNo:   | 477921        | E.                                   |            |                    |      |
| Analyte               | Result           | Ē          | SPK value     | SPK value SPK Ref Val | % Rec | LowLimit | HighLimit     | % Rec LowLimit HighLimit RPD Ref Val | %RPD       | RPDLimit           | Qual |
| TPHC Gas (C6-C14)     | QN               | 20         |               |                       |       |          |               |                                      |            |                    |      |
| Sample ID: MB-12820   | Batch ID: 12820  | Test Code: | TPHDIW        | Units: µg/L           |       | Analysis | : Date: 1/20/ | Analysis Date: 1/20/05 4:52:51 PM    | Prep Da    | Prep Date: 1/20/05 |      |
| Client ID:            |                  | Run ID:    | ORGC7_050120A | 20A                   |       | SeqNo:   | 478085        | 35                                   |            |                    |      |
| Analyte               | Result           | LImit      | SPK value     | SPK Ref Val           | % Rec | LowLimit | HighLimit     | % Rec LowLimit HighLimit RPD Ref Val | %RPD       | %RPD RPDUMIt       | Qual |
| TPHC Diesel (C12-C22) | 42.60            | 20         |               |                       |       |          |               |                                      |            |                    | 7    |
| N-Tricosane           | 50.8             | 0.10       | 90.09         | 0                     | 102%  | 28       | 107           | 0                                    |            |                    |      |
| Sample ID: MB-1/20/05 | Batch ID: R32959 | Test Code: | WITHHT        | Units: µg/L           |       | Analysis | Date: 1/20/   | Analysis Date: 1/20/05 10:35:42 PM   | Prep Date: | ıle:               | l    |
| Client ID:            |                  | Run ID:    | ORGC8_050120B | 20B                   |       | SeqNo:   | 477934        | 74                                   |            |                    |      |
| Analyte               | Result           | Limit      | SPK value     | SPK Ref Val           | % Rec |          | HighLimit     | LowLimit HighLimit RPD Ref Val       | %RPD       | RPDLimit           | Qual |
| TPH-Paint thinner     | ON               | 20         |               |                       |       |          |               |                                      |            |                    |      |

J - Analyte detected below quantitation limits

# North Coast Laboratories, Ltd.

Pierson Building Center CLIENT:

0501332 Work Order: 091148.100 Pierson's Building Center Project:

### QC SUMMARY REPORT

Date: 24-Jan-05

Laboratory Control Spike

| Sample ID: LCS-05049  | Batch ID; R32958 | Test Code: | TPHCGW        | Units: pg/L           |       | Analysis | Date: 1/20/ | Analysis Date: 1/20/05 8:18:58 PM | Prep Date: | rte:               |      |
|-----------------------|------------------|------------|---------------|-----------------------|-------|----------|-------------|-----------------------------------|------------|--------------------|------|
| Client ID:            |                  | Run 1D:    | ORGC8_050120A | 120A                  |       | SeqNo:   | 477918      | 8                                 |            |                    |      |
| Analyte               | Result           | Limit      | SPK value     | SPK Ref Val           | % Rec | LowLimit | HighLimit   | RPD Ref Val                       | %RPD       | RPDLimit           | Qual |
| TPHC Gas (C6-C14)     | 508.8            | 20         | 200           | 0                     | 102%  | 18       | 126         | 0                                 |            |                    |      |
| Sample ID: LCSD-05049 | Batch ID: R32958 | Test Code: | TPHCGW        | Units: µg/L           |       | Analysis | Date: 1/20/ | Analysis Date: 1/20/05 8:53:16 PM | Prep Date: | ite:               |      |
| Client ID:            |                  | Run ID:    | ORGC8_050120A | 120A                  |       | SeqNo:   | 477919      | 6                                 |            |                    |      |
| Analyte               | Result           | Limit      | SPK value     | SPK value SPK Ref Val | % Rec | LowLimit | HighLimit   | LowLimit HighLimit RPD Ref Val    | %RPD       | RPDLimit           | Qual |
| TPHC Gas (C6-C14)     | 499.5            | 20         | 200           | 0                     | %6'66 | 8        | 126         | 509                               | 1.84%      | 15                 |      |
| Sample ID: LCS-12820  | Batch ID: 12820  | Test Code: | TPHDIW        | Units: µg/L           |       | Analysis | Date: 1/20/ | Analysis Date: 1/20/05 3:00:39 PM | Prep Da    | Prep Date: 1/20/05 |      |
| Client ID:            |                  | Run ID:    | ORGC7_050120A | 120A                  |       | SeqNo:   | 478082      | 2                                 |            |                    |      |
| Analyte               | Result           | Limit      | SPK value     | SPK Ref Val           | % Rec | LowLimit | HighLimit   | HighLimit RPD Ref Val             | WRPD       | RPDLimit           | Qual |
| TPHC Diesel (C12-C22) | 442.6            | 20         | 200           | 0                     | 88.5% | 80       | 120         | 0                                 |            |                    |      |
| N-Tricosane           | 60.9             | 0.10       | 20.0          | 0                     | 122%  | 28       | 107         | 0                                 |            |                    | S    |
| Sample ID: LCSD-12820 | Batch ID: 12820  | Test Code: | TPHDIW        | Units: µg/L           |       | Analysis | Date: 1/20/ | Analysis Date: 1/20/05 3:19:20 PM | Prep Dg    | Prep Date: 1/20/05 |      |
| Client ID:            |                  | Run ID:    | ORGC7_050120A | 120A                  |       | SeqNo:   | 478083      | EJ                                |            |                    |      |
| Analyte               | Result           | Limit      | SPK value     | SPK Ref Val           | % Rec | LowLimit | HighLimit   | RPD Ref Val                       | %RPD       | RPDLimit           | Qual |
| TPHC Diesel (C12-C22) | 962.2            | 50         | 1,000         | 0                     | 96.2% | 80       | 120         | 443                               | 74.0%      | 15                 | 2    |
| N-Tricosane           | 54.2             | 0.10       | 20.0          | 0                     | 108%  | 28       | 107         | 6.09                              | 11.7%      | 15                 | S    |
| Sample ID: LCS-05048  | Batch ID: R32959 | Test Code: | трнрти:       | Units: pg/L           |       | Analysis | Date: 1/20/ | Analysis Date: 1/20/05 6:01:12 PM | Prep Date: | ate:               |      |
| Client ID:            |                  | Run ID:    | ORGC8_050120B | 120B                  |       | SeqNo:   | 477931      | 31                                |            |                    |      |
| Analyte               | Result           | Limit      | SPK value     | SPK Ref Val           | % Rec | LowLimit | HighLimit   | RPD Ref Val                       | %RPD       | RPDLimit           | Qual |
| TPH-Paint thinner     | 490.2            | 90         | 200           | 0                     | 98.0% | 70       | 120         | 0                                 |            |                    |      |

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

CLIENT: Pierson Building Center

Work Order: 0501332

091148.100 Pierson's Building Center

Project:

## QC SUMMARY REPORT

Laboratory Control Spike Duplicate

| Sample ID: LCSD-05048 | Batch ID: R32959 | Test Code: | Test Code: TPHPTW     | Units: µg/L           |       | Analysis | Analysis Date: 1/20/05 6:35:45 PM    |            | Prep Date:         |      |
|-----------------------|------------------|------------|-----------------------|-----------------------|-------|----------|--------------------------------------|------------|--------------------|------|
| Client ID;            |                  | Run ID:    | Run ID: 0RGC8_050120B | 120B                  |       | SeqNo:   | 477932                               |            |                    |      |
| Analyte               | Result           | Limit      | SPK value             | SPK value SPK Ref Val | % Rec | LowLimit | % Rec LowLimit HighLimit RPD Ref Val |            | %RPD RPDLimit Qual | Qual |
| TPH-Paint thinner     | 488,5            | 99         | 200                   | 0                     | 97.7% | 70       | 120 4                                | 490 0.338% | 20                 |      |

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

oted recovery limits B - Analyte detected in the associated Method Blank

| NORTH COAST | ABORATORIES LTD. | 60 West End Road • Arcata • CA 95521-9202<br>707-822-4649 Fax 707-822-6831 |
|-------------|------------------|----------------------------------------------------------------------------|
| E           | 文学               |                                                                            |

# Chain of Custody

o

4

| LABORATORY NUMBER:            | TAT: \$\Bigcap 24 \text{ Hr} \Bigcap 48 \text{ Hr} \Bigcap 5 \text{ Day} \Bigcap 5-7 \text{ Day} \Bigcap \$\Bigcap 3 \text{ C}-3 \text{ Wk} \Bigcap \Bigcap \text{ Other:} \Bigcap \text{ PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES} | REPORTING REQUIREMENTS: State Forms ☐  Preliminary: FAX ☐ Verbal ☐ By:/  Final Report: FAX ☐ Verbal ☐ By:/ | CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene: 5—250 ml BG; | 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar 13—brass tube; 14—other | PRESERVATIVE CODES: a—HNO.; b—HCl; c—H,5O.;<br>d—Na <sub>2</sub> S <sub>2</sub> O.; e—NaOH; f—C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> Cl; g—other | SAMPLE CONDITION/SPECIAL INSTRUCTIONS |         | 2 Dr      |            | 61000 TO # 7060 2302196 |        |          | Marine Ma |     | SAMPLE DISPOSAL.  M NCI Disposal of Non-Contaminated | ☐ Return ☐ Pickup | The second secon |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|-----------|------------|-------------------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                             |                                                                                                                                                                                                                                       |                                                                                                            |                                                                                       |                                                                                                                           |                                                                                                                                                        |                                       |         |           | 1          | Ī                       |        | H        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =   | DATE/TIME                                            | 227               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |                                                                                                                                                                                                                                       |                                                                                                            |                                                                                       |                                                                                                                           |                                                                                                                                                        | 17                                    | 1       | 0.0       |            |                         |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ď                                                    | - S               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |                                                                                                                                                                                                                                       |                                                                                                            |                                                                                       |                                                                                                                           |                                                                                                                                                        |                                       |         |           |            |                         |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | (ugis                                                | 11                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | Ч                                                                                                                                                                                                                                     | <i>h</i> 1                                                                                                 | Sid tin                                                                               | 141 4                                                                                                                     | (14)<br>(14)                                                                                                                                           | 世                                     | ×       | X         | X          | X                       | × >    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | RECEIVED BY (Sign)                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | 9                                                                                                                                                                                                                                     | 5                                                                                                          |                                                                                       |                                                                                                                           | 9 #k                                                                                                                                                   | 11                                    | X       | ×         | ×          | ×                       | \$     | < ×      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | RECEN                                                | 2                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | PRESERVATIVE                                                                                                                                                                                                                          | CONTAINER                                                                                                  |                                                                                       | SISATV                                                                                                                    | /NY                                                                                                                                                    |                                       |         |           |            | 1000                    |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                      | 10.00             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | tok                                                                                                                                                                                                                                   | 34.7                                                                                                       | 1                                                                                     |                                                                                                                           | 18                                                                                                                                                     | TIME MATRIX*                          | M9      | _         | enerari.   |                         |        | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | F                                                    | 7                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 0                           | Cent                                                                                                                                                                                                                                  | Ruebe                                                                                                      | Dovid P.                                                                              |                                                                                                                           | Center                                                                                                                                                 | -                                     | 1100    | 1135      | 1315       | 1300                    | 1345   | 1435     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | DATE/TIME                                            | 14405             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1600-220-707 VAN 1940-220-707 | Sould!                                                                                                                                                                                                                                | 95501<br>Raton J                                                                                           | R. Paine Do                                                                           | PROJECT INFORMATION                                                                                                       | Bulding                                                                                                                                                | DATE                                  | 11 MISS | ,   ,     | _          |                         | _      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                      | Jame              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6-01-770-7                    | 4 0                                                                                                                                                                                                                                   | -                                                                                                          | 34                                                                                    | ECT INFORMAT                                                                                                              |                                                                                                                                                        | •                                     |         |           |            |                         |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | RELINQUISHED BY (Sign & Print)                       | A P               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | Jok.                                                                                                                                                                                                                                  | Ko Ko                                                                                                      | ampler (Sign & Print): Con I R                                                        | 175738                                                                                                                    | roject Name: Riensowit<br>urchase Order Number:                                                                                                        | SAMPLEID                              | 100     | 107       | 101        | 105                     | 107    | 20       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 549 | ISHED BY                                             | C Jania           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | ttention: //<br>esults & Invoice                                                                                                                                                                                                      | $\frac{E(u)}{c_1 d_1}$ of Report                                                                           | er (Sign &                                                                            | roject Number:                                                                                                            | : Name:<br>se Order                                                                                                                                    |                                       | MW-1    | 101 - 107 | 17:47-104  | may -                   | 101-mu | 101-1417 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | REINQU                                               | SF Paine          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | ttention:<br>esults & I<br>ddress:                                                                                                                                                                                                    | hone:                                                                                                      | ample                                                                                 | roject                                                                                                                    | roject<br>urcha                                                                                                                                        | BID                                   | 7       |           | The second |                         |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                      | 8                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

CHAIN OF CUSTODY SEALS Y/N/NA SHIPPED VIA: UPS Air-Ex Fed-Ex Bus (

# ALL CONTAMINATED NON-AQUEOUS SAMPLES WILL BE RETURNED TO CLIENT

<sup>\*</sup>MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.